Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: SCHNITTMENGE) und (Schlagwörter: VEREINIGUNG) ) und (Quelle: "learn:line NRW")

Es wurden 5 Einträge gefunden


Treffer:
1 bis 5
  • Additionssatz | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010750" }

  • Additionssatz, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010752" }

  • Additionssatz, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010753" }

  • Additionssatz, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010751" }

  • Stochastik-Begriffe und -Definitionen, die man kennen sollte | W.11.01

    Wir klären an dieser Stelle einige stochastische Begriffe: Die Ereignismenge (=Ereignisraum) ist die Menge ALLER Ergebnisse, die bei einem Experiment rauskommen können. Die W.S. (=Wahrscheinlichkeit) der Ergebnismenge ist natürlich 100%=1. Die Ergebnismenge ist nur eine Auswahl von Ergebnissen die man erhalten hat, bzw. die man erhalten will. Deren W.S. liegt natürlich ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010681" }

Vorschläge für alternative Suchbegriffe:

[ Erziehungsgeschichte [ Wertung [ Bildungsgeschichte [ Geschichte [ Torspiel [ Tafelbild [ Sachkompetenz [ Orientierung [ Mittlerer Schulabschluss [ Mittlere Reife [ Methodenkompetenz [ Methode [ Mengenlehre [ Mathematikunterricht [ Kompetenzorientierte Methode [ Kompetenzerwerb