Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: R��NTGENSTRAHLUNG) und (Schlagwörter: VIDEO)

Es wurden 28 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Komplexe Zahlen potenzieren | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. (r*e^(ax))^n = (r^n)*e^(anx). Grafisch geht Potenzieren so: Annahme die neue Hochzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009749" }

  • Rentenrechnung: so rechnet man richtig | A.55.02

    Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital „K“ nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). „R“ ist die regelmäßige Rate die einbezahlt wird, „q“ ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009772" }

  • Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen | A.45.08

    Beim Zeichnen von Wurzelfunktionen, ist der „Anfangspunkt“ wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter „a“ erhält man, indem man einen beliebigen Punkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009610" }

  • Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 1 | A.45.08

    Beim Zeichnen von Wurzelfunktionen, ist der „Anfangspunkt“ wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter „a“ erhält man, indem man einen beliebigen Punkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009611" }

  • Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 2 | A.45.08

    Beim Zeichnen von Wurzelfunktionen, ist der „Anfangspunkt“ wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter „a“ erhält man, indem man einen beliebigen Punkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009612" }

  • Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 3 | A.45.08

    Beim Zeichnen von Wurzelfunktionen, ist der „Anfangspunkt“ wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter „a“ erhält man, indem man einen beliebigen Punkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009613" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 5 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009740" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 3 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009738" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 6 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009741" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 1 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009736" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite