Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: QUADRATISCHE und GLEICHUNGEN) und (Schlagwörter: "QUADRATISCHE GLEICHUNG") ) und (Quelle: "learn:line NRW")

Es wurden 45 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Quadratische Gleichungen: was ist das und wie kann man quadratische Gleichungen lösen | G.04

    Eine „quadratische Gleichung“ (bzw. „Gleichung zweiten Grades“ oder „Gleichung zweiter Ordnung“) ist eine Gleichung, in welcher die Variable (meist „x“) quadratisch auftaucht. Man sieht in der Gleichung also „x“ und „x²“. Im Koordinatensystem wird so eine Gleichung durch eine Parabel beschrieben (was uns hier jedoch nicht interessiert). Um „quadratische ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010069" }

  • Quadratische Gleichungen mit der Form ax²+c=0 lösen, Beispiel 2 | G.04.05

    Eine quadratische Gleichung, in welcher das „x“ fehlt heißt „reinquadratisch“. (Wir reden hier also von einer Gleichung der Form „ax²+c=0“). Diese Gleichung löst man einfach nach „x“ auf. Man bringt also das „c“ rüber, teilt durch „a“ und zieht die Wurzel. (nicht vergessen: es gibt eine „Plus“-Lösung UND eine „Minus“-Lösung!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010088" }

  • Quadratische Gleichungen mit der Form ax²+c=0 lösen, Beispiel 1 | G.04.05

    Eine quadratische Gleichung, in welcher das „x“ fehlt heißt „reinquadratisch“. (Wir reden hier also von einer Gleichung der Form „ax²+c=0“). Diese Gleichung löst man einfach nach „x“ auf. Man bringt also das „c“ rüber, teilt durch „a“ und zieht die Wurzel. (nicht vergessen: es gibt eine „Plus“-Lösung UND eine „Minus“-Lösung!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010087" }

  • Quadratische Gleichungen mit der Form ax²+c=0 lösen, Beispiel 3 | G.04.05

    Eine quadratische Gleichung, in welcher das „x“ fehlt heißt „reinquadratisch“. (Wir reden hier also von einer Gleichung der Form „ax²+c=0“). Diese Gleichung löst man einfach nach „x“ auf. Man bringt also das „c“ rüber, teilt durch „a“ und zieht die Wurzel. (nicht vergessen: es gibt eine „Plus“-Lösung UND eine „Minus“-Lösung!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010089" }

  • Quadratische Gleichungen mit der Form ax²+c=0 lösen | G.04.05

    Eine quadratische Gleichung, in welcher das „x“ fehlt heißt „reinquadratisch“. (Wir reden hier also von einer Gleichung der Form „ax²+c=0“). Diese Gleichung löst man einfach nach „x“ auf. Man bringt also das „c“ rüber, teilt durch „a“ und zieht die Wurzel. (nicht vergessen: es gibt eine „Plus“-Lösung UND eine „Minus“-Lösung!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010086" }

  • Bruchgleichungen: Gleichungen mit x im Nenner lösen | G.06

    Eine Bruchgleichung ist eine Gleichung, die im Nenner (unten) ein „x“ enthält. Man bestimmt zuerst die Definitionsmenge, danach multipliziert man mit dem Hauptnenner und erhält zum Schluss eine lineare oder eine quadratische Gleichung, die man „normal“ löst.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010116" }

  • Mit p-q Formel quadratische Gleichungen lösen, Beispiel 2 | G.04.02

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die p-q-Formel. Um die p-q-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „x²+px+q=0“. Auf der rechten Seite der Gleichung muss also Null stehen, vor dem „x²“ darf nichts stehen (also eine „1“). Steht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010076" }

  • Mit abc Formel quadratische Gleichungen lösen, Beispiel 3 | G.04.03

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die a-b-c-Formel. Um die a-b-c-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „ax²+bx+c=0“. Auf der rechten Seite der Gleichung muss also Null stehen. Die Zahl vor dem „x²“ heißt a, die Zahl vor dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010081" }

  • Mit p-q Formel quadratische Gleichungen lösen | G.04.02

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die p-q-Formel. Um die p-q-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „x²+px+q=0“. Auf der rechten Seite der Gleichung muss also Null stehen, vor dem „x²“ darf nichts stehen (also eine „1“). Steht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010074" }

  • Mit abc Formel quadratische Gleichungen lösen, Beispiel 1 | G.04.03

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die a-b-c-Formel. Um die a-b-c-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „ax²+bx+c=0“. Auf der rechten Seite der Gleichung muss also Null stehen. Die Zahl vor dem „x²“ heißt a, die Zahl vor dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010079" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite