Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: QUADRATISCHE und GLEICHUNGEN) und (Quelle: "learn:line NRW") ) und (Schlagwörter: DISKRIMINANTE)

Es wurden 20 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Quadratische Gleichungen mit x und einem weiteren Parameter | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010094" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 2 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010096" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 4 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010098" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 5 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010099" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 3 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010097" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 6 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010100" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 1 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010095" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 1 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008695" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 4 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008698" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 12 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008706" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite