Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: PROPORTIONALITÄT) und (Schlagwörter: SERLO)

Es wurden 15 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Relationen (Mathematik)

    Seien M, N Mengen so ist jede Teilmenge R von M times N eine Relation.

    Details  
    { "Serlo": "DE:DBS:56213" }

  • Direkte Proportionalität

    Bei der direkten Proportionalität ist das Verhältnis der Größen (ihr Quotient) immer gleich. Wie bei einem Bruch, dessen Wert sich nicht ändert wenn man ihn kürzt oder erweitert .

    Details  
    { "Serlo": "DE:DBS:56059" }

  • Funktion (Mathematik)

    Eine Funktion ist eine Vorschrift, die jedem Element x aus einer Menge (der Definitionsmenge ) eindeutig ein Element y einer anderen Menge (der Wertemenge ) zuordnet.

    Details  
    { "Serlo": "DE:DBS:55965" }

  • Funktionsgraphen verschieben

    Die Verschiebung eines Funktionsgraphen in y-Richtung wird durch Addition oder Subtraktion einer Zahl a zum Funktionsterm realisiert. Eine Verschiebung in x-Richtung erreicht man durch das Ersetzen des Argumentsx durch x+a oder x-a.

    Details  
    { "Serlo": "DE:DBS:56104" }

  • Funktionsgraphen stauchen und strecken

    Prinziell streckt man den Graphen einer Funktion in y-Richtungum Faktor a, indem man den Funktionsterm mit a multipliziert.

    Details  
    { "Serlo": "DE:DBS:56103" }

  • Parameter und Koeffizient (Mathematik)

    Ein Parameter, meist als a, b oder k benannt, ist ähnlich einer Variablen nicht auf einen bestimmten Wert festgelegt. Trotzdem wird mit ihm wie mit einem festen Wert gerechnet. Ein Parameter steht fast immer in direkter Verbindung mit einer Variablen.

    Details  
    { "Serlo": "DE:DBS:55979" }

  • Definitionsbereich einer Funktion (Mathematik)

    Der Definitionsbereich (auch: Definitionsmenge) gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen.

    Details  
    { "Serlo": "DE:DBS:55961" }

  • Umkehrfunktion (Mathematik)

    Die Umkehrfunktion einer Funktion f ist die Funktion, die jedem Funktionswert sein Argument zuordnet.

    Details  
    { "Serlo": "DE:DBS:56081" }

  • Definitionsbereich bestimmen (Mathematik)

    Den Definitionsbereich einer Funktion oder eines Terms bestimmt man, indem man untersucht, ob einzelne Teile des (Funktions)terms für bestimmte Zahlenbereiche nicht definiert sind. Zahlen aus diesen Bereichen muss man

    Details  
    { "Serlo": "DE:DBS:56093" }

  • Schnittpunkte zweier Funktionen berechnen

    Schnittpunkte von Funktionen sind die Punkte, an denen beide Funktionen den gleichen y-Wert besitzen. Mit diesem Wissen kann man die Schnittpunkte berechnen.

    Details  
    { "DBS": "DE:DBS:56106" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite