Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: PROPORTIONALITÄT) und (Schlagwörter: MATHEMATIK)

Es wurden 19 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Relationen (Mathematik)

    Seien M, N Mengen so ist jede Teilmenge R von M times N eine Relation.

    Details  
    { "Serlo": "DE:DBS:56213" }

  • Proportionalität - Unterrichtseinheit

    Mithilfe der hier vorgestellten Materialien sollen die Schülerinnen und Schüler in Klasse 6 den Schritt von der direkten Proportionalität zur linearen Funktion nahezu selbstständig erarbeiten. Material steht zum Download zur Verfügung.

    Details  
    { "DBS": "DE:DBS:35287" }

  • Direkte Proportionalität

    Schülerinnen und Schüler erarbeiten den Schritt von der direkten Proportionalität zur linearen Funktion nahezu selbstständig mit interaktiven Arbeitsblättern (Klasse 6).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 10; Höchstalter: 14

    Details  
    { "DBS": "DE:DBS:53039" }

  • Direkte Proportionalität

    Bei der direkten Proportionalität ist das Verhältnis der Größen (ihr Quotient) immer gleich. Wie bei einem Bruch, dessen Wert sich nicht ändert wenn man ihn kürzt oder erweitert .

    Details  
    { "Serlo": "DE:DBS:56059" }

  • Funktion (Mathematik)

    Eine Funktion ist eine Vorschrift, die jedem Element x aus einer Menge (der Definitionsmenge ) eindeutig ein Element y einer anderen Menge (der Wertemenge ) zuordnet.

    Details  
    { "Serlo": "DE:DBS:55965" }

  • Funktionsgraphen verschieben

    Die Verschiebung eines Funktionsgraphen in y-Richtung wird durch Addition oder Subtraktion einer Zahl a zum Funktionsterm realisiert. Eine Verschiebung in x-Richtung erreicht man durch das Ersetzen des Argumentsx durch x+a oder x-a.

    Details  
    { "Serlo": "DE:DBS:56104" }

  • Funktionsgraphen stauchen und strecken

    Prinziell streckt man den Graphen einer Funktion in y-Richtungum Faktor a, indem man den Funktionsterm mit a multipliziert.

    Details  
    { "Serlo": "DE:DBS:56103" }

  • Parameter und Koeffizient (Mathematik)

    Ein Parameter, meist als a, b oder k benannt, ist ähnlich einer Variablen nicht auf einen bestimmten Wert festgelegt. Trotzdem wird mit ihm wie mit einem festen Wert gerechnet. Ein Parameter steht fast immer in direkter Verbindung mit einer Variablen.

    Details  
    { "Serlo": "DE:DBS:55979" }

  • Definitionsbereich einer Funktion (Mathematik)

    Der Definitionsbereich (auch: Definitionsmenge) gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen.

    Details  
    { "Serlo": "DE:DBS:55961" }

  • Umkehrfunktion (Mathematik)

    Die Umkehrfunktion einer Funktion f ist die Funktion, die jedem Funktionswert sein Argument zuordnet.

    Details  
    { "Serlo": "DE:DBS:56081" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite