Ergebnis der Suche
Ergebnis der Suche nach: ( ( (Freitext: POTENZ und POTENZGESETZE) und (Quelle: "learn:line NRW") ) und (Schlagwörter: RECHNEN) ) und (Schlagwörter: ZAHL)
Es wurden 13 Einträge gefunden
- Treffer:
- 1 bis 10
-
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 3 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009859" }
-
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 2 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009858" }
-
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 1 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009857" }
-
Potenz der Potenzen: eine Potenz nochmal potenzieren | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009856" }
-
Potenzgesetze und Potenzregeln: was ist das überhaupt? Wie rechnet man damit richtig? | B.03
Bei Potenzproblemen in Mathe hilft leider auch kein Viagra. Sie müssen sich leider durch alle Potenzregeln und Potenzgesetze kämpfen. Davon hat´s zum Glück nur eine Hand voll, die wir in den Unterkapiteln betrachten. Vorab ein paar Begriffe: Betrachten wir eine Potenz der Form: a^n: Die untere Zahl a heißt Basis, andere Begriffe sind eigentlich nicht ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009841" }
-
Kehrwert: was ist die Kehrwertregel? Was ist ein negativer Exponent? Beispiel 3 | B.03.02
Steht eine Potenz im Nenner (unten im Bruch), so kann man sie hoch schreiben (in den Zähler), in dem man das Vorzeichen der Hochzahl ändert. Man erhält einen negativen Exponenten. Die zugehörige Kehrwertregel lautet: 1/(a^x) = a^(-x). Allgemein: man ändert das Vorzeichen der Hochzahl, indem man den Kehrwert bildet.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009851" }
-
Kehrwert: was ist die Kehrwertregel? Was ist ein negativer Exponent? Beispiel 1 | B.03.02
Steht eine Potenz im Nenner (unten im Bruch), so kann man sie hoch schreiben (in den Zähler), in dem man das Vorzeichen der Hochzahl ändert. Man erhält einen negativen Exponenten. Die zugehörige Kehrwertregel lautet: 1/(a^x) = a^(-x). Allgemein: man ändert das Vorzeichen der Hochzahl, indem man den Kehrwert bildet.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009849" }
-
Kehrwert: was ist die Kehrwertregel? Was ist ein negativer Exponent? | B.03.02
Steht eine Potenz im Nenner (unten im Bruch), so kann man sie hoch schreiben (in den Zähler), in dem man das Vorzeichen der Hochzahl ändert. Man erhält einen negativen Exponenten. Die zugehörige Kehrwertregel lautet: 1/(a^x) = a^(-x). Allgemein: man ändert das Vorzeichen der Hochzahl, indem man den Kehrwert bildet.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009848" }
-
Kehrwert: was ist die Kehrwertregel? Was ist ein negativer Exponent? Beispiel 2 | B.03.02
Steht eine Potenz im Nenner (unten im Bruch), so kann man sie hoch schreiben (in den Zähler), in dem man das Vorzeichen der Hochzahl ändert. Man erhält einen negativen Exponenten. Die zugehörige Kehrwertregel lautet: 1/(a^x) = a^(-x). Allgemein: man ändert das Vorzeichen der Hochzahl, indem man den Kehrwert bildet.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009850" }
-
Mit Termen rechnen, die keine gleiche Hochzahl und keine gleiche Basis haben, Beispiel 1 | B.03.05
Wenn irgendwelche Terme weder eine gleiche Hochzahl noch eine gleiche Basis haben, so kann man erst Mal nichts machen. Dennoch kann man manchmal tricksen, z.B. in dem man die Basis zerlegt, anders zusammenfasst oder sich sonst irgendwas einfallen lässt. (Dieses haben wir Zusammenfassen durch Basisangleich genannt, damit es sich professionell anhört). Manchmal kann man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009861" }