Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: GANZE und ZAHLEN) und (Schlagwörter: GRUNDRECHENART)

Es wurden 14 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Wurzel (Mathematik)

    Wurzeln kann man sowohl aus Zahlen als auch aus Termen ziehen. Aber auch beim Lösen von Gleichungen sind Wurzeln sehr wichtig. Wurzelziehen ist die Umkehroperation zum Quadrieren.

    Details  
    { "Serlo": "DE:DBS:55929" }

  • Multiplikation (Mathematik)

    Die Multiplikation, ist eine der vier Grundrechenarten. In der Umgangssprache verwendet man meist den Ausdruck "mal nehmen" für die Multiplikation von zwei oder mehr Zahlen. Die Elemente einer Multiplikation heißen Faktoren, das Ergebnis heißt Produkt.

    Details  
    { "DBS": "DE:DBS:55993" }

  • Addition (Mathematik)

    Die Addition, umgangssprachlich auch Plus-Rechnen genannt, ist eine der vier Grundrechenarten. In der Grundschule und in der Umgangssprache verwendet man meist den Ausdruck Zusammenzählen für die Addition von zwei oder mehr Zahlen, da Addition den Vorgang des Zählens beschreibt.

    Details  
    { "Serlo": "DE:DBS:55921" }

  • Schriftliche Addition

    Sowohl das anschauliche Addieren mit Hilfe einer Zahlengeraden als auch die Addition durch Auswendiglernen (zum Beispiel mit der Merktabelle) stoßen schnell an ihre Grenzen. Für größere Zahlen benutzt man daher die Methode der schriftlichen Addition.

    Details  
    { "Serlo": "DE:DBS:56250" }

  • Ganze Zahlen (Mediabox)

    Im ersten Teil geht es um positive und negative Zahlen. Wie man diese mithilfe einer Zahlengeraden vergleichen kann, wird hier erklärt.Die Mediabox umfasst 21 Stationen:Film: Wetterwarte Hohenpeißenberg, Übung 1: Hast du gut aufgepasst?, Film: Was sind die Bestandteile einer Zahl?, Film: Gegenstände einer Temperaturskala zuordnen, Übung 2: Gegenstände zuordnen, Film: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00014941" }

  • Grundrechenarten

    Es gibt vier Grundrechenarten: Addition, Subtraktion, Multiplikation, Division.

    Details  
    { "Serlo": "DE:DBS:56109" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 3 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009745" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 1 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009743" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 5 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009747" }

  • Komplexe Zahlen dividieren und Kehrwert bilden | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009742" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite