Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: FLASH-VIDEO) und (Schlagwörter: ANALYSIS)

Es wurden 1405 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 40
  • Krümmungsradius und Bogenlänge einer Kurve bestimmen | A.11.08

    Die Bogenlänge einer Kurve und der Krümmungsradius einer Kurve werden durch recht hässliche Formeln bestimmt. Allerdings kann man „hässlich“ auch so betrachten: man hackt das in Taschenrechner ein (auch wenn´s etwas länger dauert) und ist fertig. Zum Glück muss man mit diesen Formeln sonst nicht viel machen. Wenn man mit dem Taschenrechner umgehen kann, ist das Ganze ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008655" }

  • Asymptote und Grenzwert berechnen | A.16

    Asymptoten sind Geraden, an welche sich Funktionen annähern. Man kann einerseits senkrechte Asymptoten berechnen, und mit einer anderen Rechnung kann man waagerechte bzw. schiefe Asymptote berechnen. Das Ziel der Asymptotenberechnung ist zu erfahren, wie sich Funktionen im Unendlichen verhalten. Ganzrationale Funktionen (Polynome) haben nie eine Asymptote. Waagerechte oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008896" }

  • Gleichung dritten Grades; Nullstellen kubische Parabel berechnen, Beispiel 2 | A.05.01

    Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008552" }

  • p-q-Formel, Mitternachtsformel, Beispiel 8 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008715" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 9 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009257" }

  • p-q-Formel, Mitternachtsformel, Beispiel 9 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008716" }

  • p-q-Formel, Mitternachtsformel | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008707" }

  • Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 1 | A.44.04

    Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009551" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 4 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009252" }

  • p-q-Formel, Mitternachtsformel, Beispiel 12 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008719" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite