Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: FLASH-VIDEO) und (Schlagwörter: ABLEITUNG)

Es wurden 428 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Logarithmus-Funktion integrieren bzw. Stammfunktion bilden | A.14.04

    Einen ganz bestimmten Typ von Funktionen, kann man mit den „normalen“ Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: „m*x+b“ und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008835" }

  • Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04

    Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009415" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 5 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008766" }

  • Integralfunktion bestimmen, Beispiel 1 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008984" }

  • Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 1

    Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008872" }

  • Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1b: Nullstellen berechnen

    Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008572" }

  • Komplizierte Exponentialfunktionen ableiten | A.41.04

    Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009410" }

  • Stetigkeit und Differenzierbarkeit von Funktionen | A.25

    Stetigkeit einer Funktion liegt vor, wenn die Funktion NICHT springt, also kontinuierlich verläuft, wenn man sie also zeichnen kann, ohne den Stift abzusetzen. Eine Funktion ist differenzierbar, wenn sie KEINEN Knick aufweist, wenn sie also überall glatt verläuft. Man kann auch sagen, eine Funktion ist differenzierbar wenn die Funktion UND die ersten Ableitung stetig sind. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009158" }

  • Ableitung der Umkehrfunktion, Beispiel 3 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009261" }

  • Integralfunktion bestimmen, Beispiel 2 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008985" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite