Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: FLASH-VIDEO) und (Schlagwörter: ABLEITUNG)

Es wurden 426 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • Stetigkeit und Differenzierbarkeit von abschnittsweise definierten Funktionen, Beispiel 6 | A.25.02

    Eine Funktion ist „abschnittsweise definiert“, wenn bis zu einem x-Wert eine ganz bestimmte Funktion gilt, ab diesem x-Wert dann eine andere Funktion gilt. Abschnittsweise definierte Funktionen eignen sich hervorragend für Aufgabenstellungen zu Stetigkeit und Differenzierbarkeit.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009166" }

  • Mit der Produktregel (Leibniz-Regel) eine Funktion mit zwei Faktoren ableiten, Beispiel 6 | A.13.04

    Die Produktregel oder auch Leibnizregel wendet man an, will man zwei Faktoren ableiten (die mit „Mal“ verbunden sind). In beiden Faktoren sollte die Variable („x“) auftauchen, anderenfalls muss man die Produktregel nicht zwingend anwenden. Hat die Funktion die Form: f(x)=u*v, so hat die Ableitung die Form: f´(x)=u´*v+u*v´.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008788" }

  • Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2e: Schnittpunkt berechnen

    Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008582" }

  • Wurzelfunktion ableiten, Beispiel 3 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt man um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009584" }

  • Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 5

    Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008876" }

  • Beispielaufgaben zu Ableitungen, Beispiel 4 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008800" }

  • Mit der Produktregel (Leibniz-Regel) eine Funktion mit zwei Faktoren ableiten, Beispiel 4 | A.13.04

    Die Produktregel oder auch Leibnizregel wendet man an, will man zwei Faktoren ableiten (die mit „Mal“ verbunden sind). In beiden Faktoren sollte die Variable („x“) auftauchen, anderenfalls muss man die Produktregel nicht zwingend anwenden. Hat die Funktion die Form: f(x)=u*v, so hat die Ableitung die Form: f´(x)=u´*v+u*v´.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008786" }

  • Exponentialfunktion: Ableitung, Beispiel 2 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009405" }

  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 3 | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u133

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008792" }

  • Exponentialfunktion: Ableitung, Beispiel 6 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009409" }

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite