Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: FLÄCHE und VOLUMEN) und (Schlagwörter: VOLUMEN)

Es wurden 6 Einträge gefunden


Treffer:
1 bis 6
  • Rotationsvolumen einer Funktion über Umkehrfunktion berechnen; Rotation um y-Achse, Beispiel 1

    Benötigt man das Rotationsvolumen einer Funktion um die y-Achse, so lässt man die Umkehrfunktion um die x-Achse rotieren. Im Detail: Man benötigt das Volumen, das durch die Rotation um die y-Achse von einer Fläche entsteht. Zuerst bestimmt man die Umkehrfunktion von f(x) und lässt diese Umkehrfunktion nun „ganz normal“ um die x-Achse rotieren. Die Grenzen sind hierbei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009266" }

  • Rotationsvolumen einer Funktion über Umkehrfunktion berechnen; Rotation um y-Achse, Beispiel 3

    Benötigt man das Rotationsvolumen einer Funktion um die y-Achse, so lässt man die Umkehrfunktion um die x-Achse rotieren. Im Detail: Man benötigt das Volumen, das durch die Rotation um die y-Achse von einer Fläche entsteht. Zuerst bestimmt man die Umkehrfunktion von f(x) und lässt diese Umkehrfunktion nun „ganz normal“ um die x-Achse rotieren. Die Grenzen sind hierbei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009268" }

  • Rotationsvolumen einer Funktion über Umkehrfunktion berechnen; Rotation um y-Achse, Beispiel 2

    Benötigt man das Rotationsvolumen einer Funktion um die y-Achse, so lässt man die Umkehrfunktion um die x-Achse rotieren. Im Detail: Man benötigt das Volumen, das durch die Rotation um die y-Achse von einer Fläche entsteht. Zuerst bestimmt man die Umkehrfunktion von f(x) und lässt diese Umkehrfunktion nun „ganz normal“ um die x-Achse rotieren. Die Grenzen sind hierbei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009267" }

  • Rotationsvolumen einer Funktion über Umkehrfunktion berechnen; Rotation um y-Achse | A.28.05

    Benötigt man das Rotationsvolumen einer Funktion um die y-Achse, so lässt man die Umkehrfunktion um die x-Achse rotieren. Im Detail: Man benötigt das Volumen, das durch die Rotation um die y-Achse von einer Fläche entsteht. Zuerst bestimmt man die Umkehrfunktion von f(x) und lässt diese Umkehrfunktion nun „ganz normal“ um die x-Achse rotieren. Die Grenzen sind hierbei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009265" }

  • Ober- und Untersumme

    Die vom Funktionsgraphen und einem Intervall auf der x- Achse eingeschlossene Fläche lässt sich näherungsweise als Ober- bzw. Untersumme bestimmen. Zudem lässt sich das Integral als Grenzwert von Ober- bzw. Untersummen auffassen.

    Details  
    { "Serlo": "DE:DBS:56203" }

  • Anwendungsgebiete der Integralrechnung

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Auf den vorliegenden Seiten wird anschaulich gezeigt, in welchen Gebieten man Integralrechnung einsetzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004506" }

Vorschläge für alternative Suchbegriffe:

[ Mathematikunterricht [ Geometrie [ Mathematik [ Stereometrie [ Raumgeometrie [ Experiment [ Naturwissenschaftlicher Unterricht [ Schulphysik [ Physikunterricht [ Flächenberechnung [ Änderung [ Veränderung [ Pyramide [ Modifikation [ Chemieunterricht [ Oberfläche