Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: E-LEARNING) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 2077 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • e-Library: Science, Technology, Engineering and Mathematics (STEM)

    Houses a large collection of STEM teaching and learning resources, in order to provide teachers of STEM subjects with the ability to access a wide range of support materials.

    Details  
    { "HE": "DE:HE:2788048" }

  • Forschergruppe und Graduiertenkolleg nwu-essen

    Die Forschergruppe Naturwissenschaftlicher Unterricht erforscht den Schulunterricht der Fächer Chemie, Physik & Biologie unter verschiedenen Aspekten, die sich im Sinne einer gemeinsamen Weiterentwicklung grundlegender Unterrichtstheorien verzahnen. So werden in verschiedenen Lernkontexten Aufgabeneinsatz, inhaltliche Vernetzung, Lernstrategien, Problemlöseprozesse, ...

    Details  
    { "DBS": "DE:DBS:46761" }

  • Die Ziele ergeben die Notwendigkeit der Kooperation

    Bei der vorliegenden Onlineressource handelt es sich um ein Interview mit dem Universitätsprofessor für Didaktik der Physik Hans E. Fischer. Außerdem ist er Mitantragsteller und Sprecher der Forschergruppe (FG) “Naturwissenschaftlicher Unterricht” mit Graduiertenkolleg (GK) an der Universität Duisburg-Essen. In dieser Funktion äußert er sich zu den Zielen, dem Vorteil ...

    Details  
    { "DBS": "DE:DBS:36076" }

  • PRIMAS - Promoting Inquiry in Mathematics and Science Education across Europe

    Das von der Europäischen Kommission im 7. Forschungsrahmenprogramm geförderte Projekt PRIMAS (Promoting Inquiry in Mathematics and Science Education across Europe) hat zum Ziel, den mathematisch-naturwissenschaftlichen Unterricht im Schulalltag um forschendes und schülerzentriertes Lernen zu erweitern. Neue innovative Unterrichtsformen sollen Schüler/innen helfen, ...

    Details  
    { "DBS": "DE:DBS:47282" }

  • Kostenrechnung: Umsatz, Kosten, Gewinn berechnen, Beispiel 3 | A.33.01

    Die Grundlagen der Kostenrechnung sind sehr einfach. Die Einnahmen des Unternehmens heißen Umsatz oder Erlös und werden mit E(x) bezeichnet. Die Erlösfunktion berechnet man über Preis mal Menge. Es gilt also: E(x)=p*x. Der Gewinn ist natürlich die Differenz von Erlös und Kosten. Dementsprechend erhält man die Gewinnfunktion durch die Erlösfunktion abzüglich der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009380" }

  • Kostenrechnung: Umsatz, Kosten, Gewinn berechnen | A.33.01

    Die Grundlagen der Kostenrechnung sind sehr einfach. Die Einnahmen des Unternehmens heißen Umsatz oder Erlös und werden mit E(x) bezeichnet. Die Erlösfunktion berechnet man über Preis mal Menge. Es gilt also: E(x)=p*x. Der Gewinn ist natürlich die Differenz von Erlös und Kosten. Dementsprechend erhält man die Gewinnfunktion durch die Erlösfunktion abzüglich der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009377" }

  • Kostenrechnung: Umsatz, Kosten, Gewinn berechnen, Beispiel 2 | A.33.01

    Die Grundlagen der Kostenrechnung sind sehr einfach. Die Einnahmen des Unternehmens heißen Umsatz oder Erlös und werden mit E(x) bezeichnet. Die Erlösfunktion berechnet man über Preis mal Menge. Es gilt also: E(x)=p*x. Der Gewinn ist natürlich die Differenz von Erlös und Kosten. Dementsprechend erhält man die Gewinnfunktion durch die Erlösfunktion abzüglich der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009379" }

  • Kostenrechnung: Umsatz, Kosten, Gewinn berechnen, Beispiel 1 | A.33.01

    Die Grundlagen der Kostenrechnung sind sehr einfach. Die Einnahmen des Unternehmens heißen Umsatz oder Erlös und werden mit E(x) bezeichnet. Die Erlösfunktion berechnet man über Preis mal Menge. Es gilt also: E(x)=p*x. Der Gewinn ist natürlich die Differenz von Erlös und Kosten. Dementsprechend erhält man die Gewinnfunktion durch die Erlösfunktion abzüglich der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009378" }

  • Logarithmus-Funktion integrieren bzw. Stammfunktion bilden | A.14.04

    Einen ganz bestimmten Typ von Funktionen, kann man mit den „normalen“ Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: „m*x+b“ und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008835" }

  • Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 1 | A.54.07

    In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009760" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite