Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: E-LEARNING) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Schlagwörter: ABLEITUNG)

Es wurden 56 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Lernvideo: Die Ableitung der natürlichen Exponentialfunktion

    In diesem Lernvideo von Flip the Classroom wird den Schülerinnen und Schülern zunächst gezeigt, welche Funktionen sie schon ableiten können und welche nicht. Dabei stellt sich heraus, dass Exponentialfunktionen wie z. B. f(x)=2x oder f(x)=4x noch nicht mit den bisherigen Regeln abgeleitet werden können. Dann wird die Eulersche Zahl e eingeführt und Aufgaben zu f(x)=ex ...

    Details  
    { "HE": [] }

  • Differentialgleichung: Was ist eine DGL und wie rechnet man damit? | A.53

    Eine Differenzialgleichung (andere Schreibweise: Differentialgleichung) (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber. Der Schwierigkeitsgrad beginnt „relativ einfach“ (?Kap.4.3.1). Dann geht’s recht schnell mit dem Niveau aufwärts. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009697" }

  • Ableitung von komplizierten gebrochen-rationalen Funktionen / Bruchfunktion | A.43.03

    Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009509" }

  • Ableitung von komplizierten gebrochen-rationalen Funktionen, Beispiel 2 | A.43.03

    Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009511" }

  • Ableitung von komplizierten gebrochen-rationalen Funktionen, Beispiel 1 | A.43.03

    Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009510" }

  • Mit L'Hospital Grenzwerte bestimmen | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009678" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009215" }

  • So löst man eine Differentialgleichung DGL, Beispiel 1 | A.53.01

    Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009699" }

  • Mit L'Hospital Grenzwerte bestimmen, Beispiel 4 | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009682" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 2 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009709" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite