Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Freitext: DURCHSCHNITT) und (Quelle: "learn:line NRW") ) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 19 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Erwartungswert berechnen, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010776" }

  • Erwartungswert berechnen, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010775" }

  • Erwartungswert berechnen, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010777" }

  • Erwartungswert | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010774" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet; Beispiel 2 | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010687" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010685" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet; Beispiel 1 | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010686" }

  • Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet | W.11.05

    Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010692" }

  • Poisson-Verteilung Beispiel Wartezeit-Problem, Teil 4 | W.19.02

    Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010838" }

  • Poisson-Verteilung Beispiel Wartezeit-Problem | W.19.02

    Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010834" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite