Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: ASYMPTOTE) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 7 Einträge gefunden


Treffer:
1 bis 7
  • Waagrechte Asymptote und schiefe Asymptote berechnen | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008907" }

  • Asymptote

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. An dieser Stelle erfahren Lehrer und Schüler, wie eine Asymptote definiert ist und wann sie vorliegt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004388" }

  • Asymptote (Mathematik)

    Die Asymptote ist eine Gerade (manchmal auf eine Kurve), an die sich der Graph einer Funktion immer mehr annähert. “Annähern“ beudeutet, dass der Abstand zwischen Asymptote und Funktionsgraph immer kleiner wird, je weiter im Unendlichen man nachsieht.

    Details  
    { "Serlo": "DE:DBS:56090" }

  • Asymptote berechnen

    Für rationale Funktionen lässt sich einfach durch Vergleich der Grade von Zähler und Nenner bestimmen, ob diese Asymptoten im Unendlichen haben. Um diese konkret zu bestimmen, werden hier verschiedene Rechentechniken gezeigt.

    Details  
    { "DBS": "DE:DBS:55981" }

  • Logistische Funktion

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Unter diesem Link werden Logistische Funktionen definiert und ihre Eigenschaften beschrieben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004408" }

  • DynaGeo: Versiera der Agnesi (und verwandte Kurven dritter Ordnung)

    Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00003009" }

  • Polstelle (Mathematik)

    Eine Polstelle oder Unendlichkeitstelle ist eine Definitionslücke einer Funktion, in deren Nähe die Funktionswerte gegen unendlich laufen. Durch die Polstelle verläuft eine Gerade, an die sich der Funktionsgraph annähert: die Asymptote .

    Details  
    { "Serlo": "DE:DBS:55935" }

Vorschläge für alternative Suchbegriffe:

[ Kurvendiskussion [ Unendlichkeit [ Rationale Funktion [ Mathematikunterricht [ Grafische Darstellung [ Wendepunkt [ Visualisieren [ Veranschaulichung [ Veranschaulichen [ Vektorgrafik [ Tangente [ Symmetrie [ Steigung [ Software [ Schnittpunkt [ Potenzrechnung