Ergebnis der Suche (2)
Ergebnis der Suche nach: (Freitext: RADIUS)
Es wurden 76 Einträge gefunden
- Treffer:
- 11 bis 20
-
Kreisgleichung, Beispiel 2 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010525" }
-
Kreisgleichung | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010523" }
-
Kugel berechnen mit der Kugelgleichung, Beispiel 3 | V.06.07
Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei m1, m2 und m3 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010550" }
-
Stabile Kreisbahnen im Gravitationsfeld
Wir betrachten als Beispiel einen Satelliten, der auf der Erdoberfläche Radius r_ rm E ruht wir vernachlässigen die Erdrotation und der auf eine stabile Kreisbahn mit Radius r_1 um die Erde gebracht werden soll. Hierzu reicht es nicht, dem System Erde-Satellit nur die
Details { "LEIFI": "DE:LEIFI:9315" }
-
Kreisgleichung, Beispiel 1 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010524" }
-
Kugel berechnen mit der Kugelgleichung | V.06.07
Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei m1, m2 und m3 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010547" }
-
Kreisgleichung, Beispiel 3 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010526" }
-
Geometrie. Berechnung von Flächen - Die Kreisfläche. Lösung
Lösung zum gleichnamigen Arbeitsblatt.
Details { "MELT": "DE:SODIS:MELT-04602327.14" }
-
Geometrie. Berechnung von Flächen - Die Kreisfläche
Drei Textaufgaben zur Berechnung der Kreisfläche
Details { "MELT": "DE:SODIS:MELT-04602327.13" }
-
Einheitskreis: was ist das und wofür man ihn braucht | T.01.03
Der Einheitskreis hat den Mittelpunkt im Ursprung der Koordinatensystems und hat einen Radius von 1. Man kann am Einheitskreis ganz viele Theorie zu Sinus, Kosinus, Tangens herleiten und veranschaulichen. Sie werden den Einheitskreis nicht unbedingt brauchen, man kann alles auch anders herleiten oder sich merken. Manche Leute finden die Veranschaulichung am Einheitskreis ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010288" }