Ergebnis der Suche (9)

Ergebnis der Suche nach: (Freitext: WAHRSCHEINLICHKEITSRECHNUNG)

Es wurden 113 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Bernoulli-Kette (Mathematik)

    Wird ein Bernoulli-Experiment (d. h. ein Experiment mit nur zwei möglichen Ergebnissen) n-mal voneinander unabhängig wiederholt, so spricht man von einer Bernoulli-Kette der Länge n.

    Details  
    { "DBS": "DE:DBS:56181" }

  • Fehler 1. Art, Fehler 2. Art

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier werden die Fehlerarten, die beim Testen von Hypothesen auftreten können, erläutert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004561" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010685" }

  • Tschebyscheff-Ungleichung, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010779" }

  • Additionssatz, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010752" }

  • Ergebnismenge (Mathematik)

    Die Ergebnismenge oder der Ergebnisraum ist die Menge aller möglichen Ergebnisse eines Zufallsexperiments . Bezeichnet wird die Ergebnismenge bzw. der Ergebnisraum zumeist mit dem griechischen Buchstaben Omega ("Omega").

    Details  
    { "DBS": "DE:DBS:55924" }

  • Absolute Häufigkeit

    Die absolute Häufigkeit gibt an, wie oft bei einem Experiment ein bestimmtes Ereignis eintritt. Als Anzahl ist sie immer eine natürliche Zahl zwischen Null und der Gesamtzahl von Versuchen.

    Details  
    { "DBS": "DE:DBS:56007" }

  • Wahrscheinlichkeiten beim Roulette

    Hier erlernen die Schüler, einfache Wahrscheinlichkeiten beim Roulette-Spiel zu berechnen. Des Weiteren wird das Roulette-Spiel an sich erklärt.

    Details  
    { "Select.HE": "DE:Select.HE:1543533" }

  • MINT Zirkel - Corona-Pandemie im Mathematikunterricht

    Mathematik ist besonders in der derzeitigen Situation ein wichtiges Instrument zur Analyse und Prognose der Ausbreitung des Coronavirus. Prof. Dr. Daniel Gembris zeigt euch in seinem Artikel auf, wie ihr euren Schülern und Schülerinnen mathematische Inhalte mit hohem Aktualitätsbezug vermitteln könnt!

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00016940" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet; Beispiel 2 | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010687" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite