Ergebnis der Suche (2)
Ergebnis der Suche nach: (Freitext: SINUSFUNKTION)
Es wurden 15 Einträge gefunden
- Treffer:
- 11 bis 15
-
Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 1 | B.07.02
Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009913" }
-
So löst man eine Differentialgleichung DGL, Beispiel 1 | A.53.01
Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009699" }
-
Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 3 | B.07.02
Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009915" }
-
Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen | B.07.02
Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009912" }
-
Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 3 | A.53.02
Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: dy/dx, multipliziert die gesamte Gleichung mit dx und versucht nun auch im Folgenden, alle x ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009705" }