Ergebnis der Suche (4)
Ergebnis der Suche nach: (Freitext: NULLSTELLE)
Es wurden 219 Einträge gefunden
- Treffer:
- 31 bis 40
-
Kurvendiskussion Beispiel 3f: Funktion zeichnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009014" }
-
Kurvendiskussion Beispiel 3b: Funktion auf Symmetrie untersuchen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009010" }
-
Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema | A.46.02
Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009623" }
-
Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 2 | A.46.02
Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009625" }
-
Kurvendiskussion Beispiel 3e: Wendepunkte berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009013" }
-
Horner-Schema, Beispiel 3 | A.12.08
Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008743" }
-
Horner-Schema, Beispiel 6 | A.12.08
Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008746" }
-
Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 2 | A.45.05
Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach x auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009599" }
-
Horner-Schema, Beispiel 1 | A.12.08
Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008741" }
-
Horner-Schema | A.12.08
Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008740" }