Ergebnis der Suche (3)
Ergebnis der Suche nach: (Freitext: NULLSTELLE)
Es wurden 219 Einträge gefunden
- Treffer:
- 21 bis 30
-
Polynomdivision, Beispiel 4 | A.12.07
Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008737" }
-
Polynomdivision, Beispiel 3 | A.12.07
Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008736" }
-
Polynomdivision, Beispiel 6 | A.12.07
Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008739" }
-
Kurvendiskussion Beispiel 3g: Wendenormale berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009015" }
-
Kurvendiskussion Beispiel 3h: Fläche zwischen Funktion und der an x-Achse gespiegelten Funktion
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009016" }
-
Kurvendiskussion Beispiel 3a: Ableitungen bestimmen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009009" }
-
Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 3 | A.46.02
Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009626" }
-
Kurvendiskussion Beispiel 3d: Extrema berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009012" }
-
Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 1 | A.46.02
Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009624" }
-
Kurvendiskussion Beispiel 3c: Nullstellen berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009011" }