Ergebnis der Suche (12)

Ergebnis der Suche nach: (Freitext: NULLSTELLE)

Es wurden 219 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Ausklammern: so klammert man einen Term richtig aus, Beispiel 3 | B.01.03

    Wenn zwei Terme durch eine Strichrechnung verbunden sind und gleiche Buchstaben enthalten, so kann man diese Buchstaben „ausklammern“. Z.B. aus „ax²+bx“ kann man „x“ ausklammern. == ax²+bx=x*(ax+b). Das Ausklammern ist also so eine Art „Rückwärts-Ausmultiplizieren“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009800" }

  • Ausklammern: so klammert man einen Term richtig aus | B.01.03

    Wenn zwei Terme durch eine Strichrechnung verbunden sind und gleiche Buchstaben enthalten, so kann man diese Buchstaben „ausklammern“. Z.B. aus „ax²+bx“ kann man „x“ ausklammern. == ax²+bx=x*(ax+b). Das Ausklammern ist also so eine Art „Rückwärts-Ausmultiplizieren“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009797" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 6 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009395" }

  • Schaubild einer Logarithmusfunktion erstellen, Beispiel 3 | A.44.07

    ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009569" }

  • Quadratische Ungleichungen | A.26.02

    Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher „x²“ vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009180" }

  • Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse | A.44.09

    Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009576" }

  • Ungleichungen höherer Potenz, Beispiel 1 | A.26.03

    Eine „höhere Ungleichung“ oder besser eine „Ungleichung höherer Potenz“ ist eine Ungleichung, in welcher höhere Potenzen von „x“ auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009188" }

  • Schaubild einer Wurzelfunktion erstellen, Beispiel 3 | A.45.07

    Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009609" }

  • Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 5 | A.41.02

    Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009401" }

  • Integralfunktion bestimmen | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008983" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite