Ergebnis der Suche (11)
Ergebnis der Suche nach: (Freitext: NULLSTELLE)
Es wurden 219 Einträge gefunden
- Treffer:
- 101 bis 110
-
Integralfunktion bestimmen, Beispiel 4 | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008987" }
-
Integralfunktion bestimmen, Beispiel 3 | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008986" }
-
Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 1 | A.45.09
Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009615" }
-
Quadratische Ungleichungen, Beispiel 5 | A.26.02
Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher x² vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009185" }
-
Schaubild einer Wurzelfunktion erstellen, Beispiel 3 | A.45.07
Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009609" }
-
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 4 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009400" }
-
Ungleichungen | A.26
Eine Ungleichung hat kein Gleich-Zeichen, sondern ein Ungleichheits-Zeichen, also ein Kleiner-Zeichen oder ein Größer-Zeichen (bzw. kleiner gleich oder größer gleich). Man behandelt Ungleichungen genau wie Gleichungen, nur dass sich das Ungleichheitszeichen umdreht, wenn man mit einer negativen Zahl multipliziert oder durch eine negative Zahl ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009172" }
-
Quadratische Ungleichungen | A.26.02
Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher x² vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009180" }
-
Ausklammern: so klammert man einen Term richtig aus | B.01.03
Wenn zwei Terme durch eine Strichrechnung verbunden sind und gleiche Buchstaben enthalten, so kann man diese Buchstaben ausklammern. Z.B. aus ax²+bx kann man x ausklammern. == ax²+bx=x*(ax+b). Das Ausklammern ist also so eine Art Rückwärts-Ausmultiplizieren.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009797" }
-
Integralfunktion bestimmen, Beispiel 5 | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008988" }