Ergebnis der Suche (10)
Ergebnis der Suche nach: (Freitext: MATRIX)
Es wurden 119 Einträge gefunden
- Treffer:
- 91 bis 100
-
Partielle Ableitung | A.51.01
Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der Ableitung sprechen, denn man muss schließlich präzisieren, ob man nach x, nach y oder was auch immer ableitet. Also spricht man von der partiellen Ableitung nach x, oder der partiellen Ableitung nach y, usw. Betrachtet man z.B. die Ableitung nach x (oder ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009652" }
-
Partielle Ableitung, Beispiel 7 | A.51.01
Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der Ableitung sprechen, denn man muss schließlich präzisieren, ob man nach x, nach y oder was auch immer ableitet. Also spricht man von der partiellen Ableitung nach x, oder der partiellen Ableitung nach y, usw. Betrachtet man z.B. die Ableitung nach x (oder ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009659" }
-
Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 2 | M.03.04
Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte X keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter A und B stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein X² oder so), so dass die Vorgehensweise immer die gleiche ist: ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010188" }
-
Partielle Ableitung, Beispiel 6 | A.51.01
Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der Ableitung sprechen, denn man muss schließlich präzisieren, ob man nach x, nach y oder was auch immer ableitet. Also spricht man von der partiellen Ableitung nach x, oder der partiellen Ableitung nach y, usw. Betrachtet man z.B. die Ableitung nach x (oder ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009658" }
-
Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 3 | M.03.04
Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte X keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter A und B stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein X² oder so), so dass die Vorgehensweise immer die gleiche ist: ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010189" }
-
Partielle Ableitung, Beispiel 3 | A.51.01
Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der Ableitung sprechen, denn man muss schließlich präzisieren, ob man nach x, nach y oder was auch immer ableitet. Also spricht man von der partiellen Ableitung nach x, oder der partiellen Ableitung nach y, usw. Betrachtet man z.B. die Ableitung nach x (oder ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009655" }
-
Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen | M.03.04
Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte X keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter A und B stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein X² oder so), so dass die Vorgehensweise immer die gleiche ist: ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010186" }
-
Partielle Ableitung, Beispiel 1 | A.51.01
Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der Ableitung sprechen, denn man muss schließlich präzisieren, ob man nach x, nach y oder was auch immer ableitet. Also spricht man von der partiellen Ableitung nach x, oder der partiellen Ableitung nach y, usw. Betrachtet man z.B. die Ableitung nach x (oder ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009653" }
-
Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 1 | M.03.04
Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte X keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter A und B stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein X² oder so), so dass die Vorgehensweise immer die gleiche ist: ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010187" }
-
Methode "Konfliktmatrix"
Im Methodenblatt geht es um das Reflektieren des Verhaltens von Konfliktparteien durch eine Konfliktmatrix. Es werden bestimmte Konfliktlössungsstile vorgestellt und dementsprechende Beispiele gefunden. Fördergeber*in: Bundesministerium für Familie, Senioren, Frauen und Jugend
Details { "PEP": "DE:PEP:6b05f3e7-d378-4c25-93a4-52f80aeaa71a" }