Ergebnis der Suche (10)

Ergebnis der Suche nach: (Freitext: MATRIX)

Es wurden 119 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Partielle Ableitung | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009652" }

  • Partielle Ableitung, Beispiel 7 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009659" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 2 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010188" }

  • Partielle Ableitung, Beispiel 6 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009658" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 3 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010189" }

  • Partielle Ableitung, Beispiel 3 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009655" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010186" }

  • Partielle Ableitung, Beispiel 1 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009653" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 1 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010187" }

  • Methode "Konfliktmatrix"

    Im Methodenblatt geht es um das Reflektieren des Verhaltens von Konfliktparteien durch eine Konfliktmatrix. Es werden bestimmte Konfliktlössungsstile vorgestellt und dementsprechende Beispiele gefunden. Fördergeber*in: Bundesministerium für Familie, Senioren, Frauen und Jugend

    Details  
    { "PEP": "DE:PEP:6b05f3e7-d378-4c25-93a4-52f80aeaa71a" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite