Ergebnis der Suche (2)

Ergebnis der Suche nach: (Freitext: INVERSION)

Es wurden 29 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Umkehrfunktion berechnen | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009230" }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 2 | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009241" }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 5 | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009244" }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 8 | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009247" }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 7 | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009246" }

  • Schichtungszustände in der Atmosphäre - Schichtungszustände in der Atmosphäre

    Die verschiedenen Schichtungszustände in der Atmosphäre (labil, stabil, indifferent) werden anhand von Beispielen schrittweise erklärt.

    Details  
    { "CONTAKE": "DE:SODIS:AT.CONTAKE.12340" }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 3 | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009242" }

  • Umkehrfunktion berechnen, Beispiel 2 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009232" }

  • Umkehrfunktion berechnen, Beispiel 1 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009231" }

  • Umkehrfunktion berechnen, Beispiel 6 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009236" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite