Ergebnis der Suche (2)
Ergebnis der Suche nach: (Freitext: INVERSION)
Es wurden 29 Einträge gefunden
- Treffer:
- 11 bis 20
-
Umkehrfunktion berechnen | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009230" }
-
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 2 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009241" }
-
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 5 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009244" }
-
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 8 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009247" }
-
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 7 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009246" }
-
Schichtungszustände in der Atmosphäre - Schichtungszustände in der Atmosphäre
Die verschiedenen Schichtungszustände in der Atmosphäre (labil, stabil, indifferent) werden anhand von Beispielen schrittweise erklärt.
Details { "CONTAKE": "DE:SODIS:AT.CONTAKE.12340" }
-
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 3 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009242" }
-
Umkehrfunktion berechnen, Beispiel 2 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009232" }
-
Umkehrfunktion berechnen, Beispiel 1 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009231" }
-
Umkehrfunktion berechnen, Beispiel 6 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009236" }