Ergebnis der Suche
Ergebnis der Suche nach: (Freitext: INVERSION)
Es wurden 29 Einträge gefunden
- Treffer:
- 1 bis 10
-
Die Alpen - Inversion und Kaltluftseen
Details { "MELT": "DE:SODIS:MELT-06600200.083" }
-
DynaGeo: Konstruktion des Bildpunktes bei der Inversion am Kreis
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00002866" }
-
Die Alpen - Temperaturinversion
Details { "MELT": "DE:SODIS:MELT-06600200.489" }
-
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009239" }
-
DynaGeo: Inversion einer Parabel am Kreis
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00002868" }
-
Unser Lebensmittel Luft - Inversionsmodell
Bei diesem Experiment wird in einem Landschaftsmodell eine Inversionsschicht der Luft erzeugt. Ziel ist es zu erkenne, warum Becken- und Tallandschaften im Bezug auf Schadstoffausbreitungen benachteiligt sind.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00012482" }
-
Umkehrfunktion berechnen, Beispiel 5 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009235" }
-
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 4 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009243" }
-
Was ist eine Umkehrfunktion und wie rechnet man damit? | A.28
Löst man eine Funktionsgleichung nach x auf, erhält man die Umkehrfunktion (gelegentlich auch inverse Funktion genannt). (Wenn Sie in die Funktion für y eine Zahl einsetzen und dann nach x auflösen, haben Sie das bereits tausendmal gemacht. Wenn Sie die Funktion umkehren (invertieren) ist also nur neu, dass Sie für y nichts einsetzen, sondern stehen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009229" }
-
Umkehrfunktion berechnen, Beispiel 8 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009238" }