Ergebnis der Suche (12)

Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)

Es wurden 458 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Polynomdivision, Beispiel 2 | A.12.07

    Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008735" }

  • Polynomdivision | A.12.07

    Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008733" }

  • Polynomdivision, Beispiel 5 | A.12.07

    Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008738" }

  • Gleichungen lösen, nach x auflösen, Beispiel 5 | A.12.02

    Gleichungen auflösen bzw. nach x auflösen: Enthält eine Gleichung einen einzigen Buchstaben „x“, kann man immer nach diesem auflösen, ganz gleich, wie hässlich die Gleichung ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008679" }

  • Gleichungen lösen, nach x auflösen | A.12.02

    Gleichungen auflösen bzw. nach x auflösen: Enthält eine Gleichung einen einzigen Buchstaben „x“, kann man immer nach diesem auflösen, ganz gleich, wie hässlich die Gleichung ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008674" }

  • Wurzelfunktion: kurze Einführung | A.45

    Unter einer Wurzel darf nie etwas Negatives stehen. Bei Wurzelfunktionen muss man daher auch eine Definitionsmenge beachten. Der Term unter der Wurzel muss größer oder gleich Null sein. Das Schaubild einer Wurzel-Funktion erkennt man typischerweise daran, dass das Schaubild in einem ganz bestimmten Punkt beginnt und oft einer halben, liegenden Parabel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009580" }

  • Beispielaufgaben zu Ableitungen, Beispiel 4 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008800" }

  • So leitet man vermischte Funktionen ab, Beispiel 9 | A.13.07

    In den bisherigen Kapiteln haben wir hauptsächlich Polynome („normale“ Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008812" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 6 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008913" }

  • Logarithmus-Funktion integrieren bzw. Stammfunktion bilden | A.14.04

    Einen ganz bestimmten Typ von Funktionen, kann man mit den „normalen“ Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: „m*x+b“ und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008835" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite