Ergebnis der Suche (4)
Ergebnis der Suche nach: (Freitext: VERFAHREN)
Es wurden 437 Einträge gefunden
- Treffer:
- 31 bis 40
-
Mit Newton-Verfahren Nullstellen bestimmen, Beispiel 1 | A.32.02
Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009361" }
-
Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen, Beispiel 2
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010057" }
-
Mit Newton-Verfahren Nullstellen bestimmen, Beispiel 4 | A.32.02
Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009364" }
-
Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen, Beispiel 1
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010056" }
-
Mit Newton-Verfahren Nullstellen bestimmen, Beispiel 3 | A.32.02
Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009363" }
-
Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen | G.02.07
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010055" }
-
Mit Newton-Verfahren Nullstellen bestimmen | A.32.02
Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009360" }
-
LGS lösen: unendlich viele Lösungen mit Gauß-Verfahren, Beispiel 2 | M.02.02
Um die Lösung eines LGS zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat oder eine Nullzeile erhält, erhält man (meist) unendlich viele Lösungen (auch mehrdeutige Lösung genannt). Man wählt nun für eine der Unbekannten t (oder einen anderen Parameter) und bestimmt nun alle ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010145" }
-
Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.05
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) unendlich viele Lösungen (auch mehrdeutige Lösung genannt). Man wählt nun für eine ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010156" }
-
Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.05
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) unendlich viele Lösungen (auch mehrdeutige Lösung genannt). Man wählt nun für eine ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010155" }