Ergebnis der Suche (2)
Ergebnis der Suche nach: (Freitext: VERFAHREN)
Es wurden 436 Einträge gefunden
- Treffer:
- 11 bis 20
-
Gauß'sches Eliminationsverfahren
Gaußsches Eliminationsverfahren. Theoretische Grundlagen und programmierte Realisierung. Facharbeit von Florian Michahelles, Abiturjahrgang 1992/1994, Werner-von-Siemens-Gymnasium Weißenburg/Bay. .Diese Facharbeit behandelt drei Verfahren zur Lösung linearer Gleichungssysteme. Im ersten werden zunächst die theoretischen Grundlagen der Verfahren dargelegt, im zweiten Teil ...
Details { "DBS": "DE:DBS:7332" }
-
Das Struktur-Lege-Verfahren-Förderziele
Individuelle Lernförderung ist eine wichtige Aufgabe der Schule. Einige Kinder benötigen besondere Aufmerksamkeit, weil Lernprozesse und -bedingungen beeinträchtigt sind. Auf diesen Seiten wird das Struktur-Lege-Verfahren für die Erarbeitung individueller Förderkonzepte vorgestellt. Es stellt die Entwicklung positiver Lernsituationen in den Mittelpunkt und zeichnet sich ...
Details { "DBS": "DE:DBS:65137" }
-
LGS lösen: eindeutige Lösung mit Gauß-Verfahren | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige Lösung. Nun hat man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010138" }
-
LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige Lösung. Nun hat man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010140" }
-
LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige Lösung. Nun hat man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010139" }
-
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010149" }
-
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010151" }
-
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010152" }
-
BVG: Parteiverbotsverfahren
Das Bundesverfassungsgericht informiert über Parteiverbotsverfahren.
Details { "HE": "DE:HE:2969837" }
-
Einführung in die WebQuest-Methode
WebQuests für Eilige soll Ihnen einen kurzen Überblick über das WebQuest-Verfahren liefern.
Details { "HE": "DE:HE:319300" }