Ergebnis der Suche (6)
Ergebnis der Suche nach: (Freitext: TRANSFORMATION)
Es wurden 94 Einträge gefunden
- Treffer:
- 51 bis 60
-
Calc3D - Rechenprogramm
Calc 3D ist ein Programm für Windows 95/98/NT zum Rechnen mit 3-dimensionalen Vektoren, Matrizen, komplexen Zahlen, Quaternionen. Außerdem werden Abstand, Schnittpunkt, -gerade, -ebene, -kreis, Kugelvolumen, Kugeloberfläche, Dreieckfläche von Linien, Ebenen, Kugeln und Punkten bestimmt. Kartesische Koordinaten, Kugelkoordinaten und Zylinderkoordinaten können ineinander ...
Details { "DBS": "DE:DBS:34" }
-
Offensive Mittelstand
Die Offensive Mittelstand ist eine nationale Initiative und Interessengemeinschaft von öffentlichen und privaten Organisationen und Verbänden. Ziel aller Aktivitäten ist es, die Qualität der Arbeit und eine mitarbeiterorientierte Unternehmenskultur im Mittelstand zu fördern, damit möglichst viele KMU den demografischen Wandel und die digitale Transformation der Arbeit ...
Details { "DBS": "DE:DBS:43977" }
-
Affine Abbildung | M.09
Eine affine Abbildung wird durch Matrizen beschrieben. Die Matrizen nehmen Vektoren (als eine Art x-Werte) und machen daraus neue Vektoren (eine Art y-Werte). Die Abbildungen können Drehungen sein, Verschiebungen, Streckungen, Spiegelungen, Scherungen und noch ein paar andere Möglichkeiten. Die ein- oder andere Idee ist noch wichtig, das machen wir hier ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010261" }
-
Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010274" }
-
Affine Abbildung; Eigenvektor | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010269" }
-
Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010272" }
-
Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010273" }
-
Forum "digitale, interaktive Didaktik" (Forum DID)
Das Forum Digitale, interaktive Didaktik ist im Umfeld einer Initiative des Fraunhofer Institut für Grafische Datenverarbeitung IGD angesiedelt. Aufgabe ist, die digitale, interaktive Didaktik im Bereich der IT-gestützten Lehr- und Lernumgebung zu fördern. Das Forum führt verschiedene Interessengruppen wie Schulen, Hochschulen, Unternehmen, Verlage, Verbände, ...
Details { "DBS": "DE:DBS:57795" }
-
Nationale Initiative zur KI-basierten Transformation in die Datenökonomie (NITD)
Die Nationale Initiative zur KI-basierten Transformation in die Datenökonomie (NITD) ist ein gemeinsames Projekt von acatech Deutsche Akademie der Technikwissenschaften und dem Bundesministerium für Digitales und Verkehr (BMDV). Die NITD ist Teil der Digitalstrategie der Bundesregierung.Die NITD erarbeitet organisatorische und technische Grundlagen für einen ...
Details { "DBS": "DE:DBS:64238" }
-
Konjugation: Übertragung des F - Plasmids
Die englischsprachige Animation zeigt Replikation und Transfer des F - Plasmids von einer F+ zur F- Zelle. Bei der Konjugation wird die Erbsubstanz bei direktem Kontakt zwischen Bakterien übertragen. Unter der in anderen Videos des Lernarchivs zu Bakterien gezeigten Transformation versteht man dagegen die Übertragung freier (nicht in Viren oder anderen Bakterien ...
Details { "HE": [] }