Ergebnis der Suche (5)
Ergebnis der Suche nach: (Freitext: WINKEL)
Es wurden 251 Einträge gefunden
- Treffer:
- 41 bis 50
-
Glücksrad Wahrscheinlichkeit berechnen, Beispiel 1 | W.14.03
Ein Glücksrad ist ein Rad, das in mehrere sogenannte Sektoren aufgeteilt ist. Wenn die Sektoren nicht gleich groß sind, ist meist der Winkel jedes Sektors gegeben, über welchen man die Wahrscheinlichkeit berechnen kann, mit welcher der Sektor auftritt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010734" }
-
DynaGeo: Steigung, Winkel & Längenverhältnis
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00002949" }
-
Glücksrad Wahrscheinlichkeit berechnen, Beispiel 2 | W.14.03
Ein Glücksrad ist ein Rad, das in mehrere sogenannte Sektoren aufgeteilt ist. Wenn die Sektoren nicht gleich groß sind, ist meist der Winkel jedes Sektors gegeben, über welchen man die Wahrscheinlichkeit berechnen kann, mit welcher der Sektor auftritt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010735" }
-
Glücksrad Wahrscheinlichkeit berechnen | W.14.03
Ein Glücksrad ist ein Rad, das in mehrere sogenannte Sektoren aufgeteilt ist. Wenn die Sektoren nicht gleich groß sind, ist meist der Winkel jedes Sektors gegeben, über welchen man die Wahrscheinlichkeit berechnen kann, mit welcher der Sektor auftritt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010733" }
-
Winkel am Kreis
Auf dieser Seite von lo-net.de werden viele Beweise des Umfangswinkelsatzes und des Satz des Thales vorgestellt und mit zahlreichen Übungen vertieft.
Details { "HE": [] }
-
GeoGebra entdecken: Winkel
Dynamische Geometriesoftware wie GeoGebra ist aus einem zeitgemäßen Mathematikunterricht nicht mehr wegzudenken. Dabei sollte die Software nicht nur als Vorführinstrument genutzt werden, sondern vielmehr sollten es die Lernenden sein, die damit arbeiten. Dieses Arbeitsmaterial widmet sich der Thematik "Winkel" und zeigt diesbezüglich existente ...
Details { "LO": "DE:LO:de.lehrer-online.wm_002388" }
-
Rechter Winkel einer Geraden mit A und B, Beispiel 1 | V.08.05
Eine der Formulierungen der letzten Jahre, die zwar immer gleich lautet, jedoch etwas verunglückt ist (man könnte auch sagen: beschissen). Gegeben sind eine Gerade g und zwei Punkte A und B, gesucht ist derjenige Punkt der Gerade von welchem aus die Strecke AB unter einem rechten Winkel erscheint. Gemeint ist: man sucht einen Punkt G der Gerade g derart, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010628" }
-
Rechter Winkel einer Geraden mit A und B | V.08.05
Eine der Formulierungen der letzten Jahre, die zwar immer gleich lautet, jedoch etwas verunglückt ist (man könnte auch sagen: beschissen). Gegeben sind eine Gerade g und zwei Punkte A und B, gesucht ist derjenige Punkt der Gerade von welchem aus die Strecke AB unter einem rechten Winkel erscheint. Gemeint ist: man sucht einen Punkt G der Gerade g derart, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010627" }
-
Rechter Winkel einer Geraden mit A und B, Beispiel 2 | V.08.05
Eine der Formulierungen der letzten Jahre, die zwar immer gleich lautet, jedoch etwas verunglückt ist (man könnte auch sagen: beschissen). Gegeben sind eine Gerade g und zwei Punkte A und B, gesucht ist derjenige Punkt der Gerade von welchem aus die Strecke AB unter einem rechten Winkel erscheint. Gemeint ist: man sucht einen Punkt G der Gerade g derart, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010629" }
-
Tangens und arctan und wie man richtig damit rechnet | T.01.06
Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010299" }