Ergebnis der Suche (17)
Ergebnis der Suche nach: (Freitext: WINKEL)
Es wurden 254 Einträge gefunden
- Treffer:
- 161 bis 170
-
Suche die Märchentitel!
Hier finden Sie Lernspiele zu verschiedenen Aspekten rund um das Thema Grimms Märchen. Diese Lernspiele wurden erstellt von den Lehrkräften im Vorbereitungsdienst Anna Lisa Conzendorf, Jennifer Fischer, Kathrin Matterne, Stefanie Wiegand und Annika Winkel (Juli 2015). Der Lernpfad eignet sich für die Klassen 4 bis 6.
Details { "HE": [] }
-
DynaGeo: Additionstheoreme (Herleitung)
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00002955" }
-
Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 3 | A.22.02
Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009085" }
-
Wurzel von komplexen Zahlen ziehen, Beispiel 3 | A.54.06
Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009757" }
-
Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 4 | A.22.02
Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009086" }
-
Wurzel von komplexen Zahlen ziehen | A.54.06
Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009754" }
-
Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 2 | A.22.02
Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009084" }
-
Schnittwinkel über m=tan(?) und Steigungswinkel berechnen | A.22.02
Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009082" }
-
Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 5 | A.22.02
Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009087" }
-
Wurzel von komplexen Zahlen ziehen, Beispiel 2 | A.54.06
Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009756" }