Ergebnis der Suche (7)

Ergebnis der Suche nach: (Freitext: WAHRSCHEINLICHKEITSRECHNUNG)

Es wurden 113 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Tschebyscheff-Ungleichung, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010779" }

  • Radioaktiver Zerfall mit Würfeln

    Mathematische Beschreibung Mithilfe der Wahrscheinlichkeitsrechnung, kannst du bei Würfeln vorhersagen, wieviele Einer zu bei einem Wurf im Mittel würfelst. Die Wahrscheinlichkeit eine Eins zu würfeln ist frac 1 6 , da es sechs Möglichkeiten gibt, von denen eine die gewünschte

    Details  
    { "LEIFI": "DE:LEIFI:8213" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010685" }

  • Sachsen - Prüfungsaufgaben (nur mit Schüler-/Lehrer-Passwort)

    Prüfungsaufgaben vergangener Schuljahre können für - Oberschulen, - allgemeinbildende und berufliche Gymnasien, - Berufsfachschulen für Wirtschaft und - Fachoberschulen über eine Datenbank abgerufen werden. Einige der Dokumente beinhalten jedoch Sekundärquellen. Zur Wahrung bestehender Urheberrechte für Sekundärquellen ist es erforderlich, diese Dateien in einem ...

    Details  
    { "DBS": "DE:DBS:9410" }

  • Wenn der Förster seine Hasen zählen will?

    Mithilfe eines Realexperimentes und einer Simulationsumgebung wird der Prozess der Modellbildung und die Qualität von Modellen diskutiert (ab Klasse 9).; Lernressourcentyp: Unterrichtsplanung; Software (Anwendung oder Lehr- und Lernsoftware); Mindestalter: 10; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:52668" }

  • Mittelwert und Standardabweichung

    In diesem Videoclip werden die beiden Begriffe erklärt.

    Details  
    { "Select.HE": "DE:Select.HE:1114521" }

  • Vereinigungsmenge (Mathematik)

    Wenn A und B Mengen sind, dann ist die Vereinigungsmenge von A und B die Menge, die alle Elemente aus A und alle Elemente aus B enthält.

    Details  
    { "DBS": "DE:DBS:56169" }

  • Urnenmodell (Mathematik)

    Das Urnenmodell dient dazu, (mehrstufige) Zufallsexperimente zu modellieren. Diese Modelle können dann kombinatorisch berechnet werden.

    Details  
    { "DBS": "DE:DBS:56172" }

  • Wahrscheinlichkeit (Mathematik)

    Die Wahrscheinlichkeit stellt ein Maß für die Sicherheit oder Unsicherheit einer Aussage dar. In der Stochastik wird jedem Ereignis eines Zufallsexperimentes eine reelle Zahl zwischen 0 und 1 zugeordnet.

    Details  
    { "DBS": "DE:DBS:56050" }

  • Additionssatz | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010750" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite