Ergebnis der Suche (12)

Ergebnis der Suche nach: (Freitext: STOCHASTIK)

Es wurden 358 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Erwartungswert berechnen, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010775" }

  • Erwartungswert berechnen, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010776" }

  • Mathematik - Lehrpläne für NRW

    Mathematik- Lehrpläne Nordrhein-Westfalens, Quellen zum Mathematikunterricht im Internet und Unterrichtsmaterial nach Klassen (5-13) sortiert. Die Gliederung der Themen bzw. Inhalte entspricht den Lehrplänen: Algebra, Geometrie, Stochastik, Koordinatengeometrie, Beschreibende Statistik, Differentialrechnung ganz-rationaler Funktionen, Analysis, Lineare Algebra/Analytische ...

    Details  
    { "DBS": "DE:DBS:9878" }

  • Vom Lotto zum Pascalschen Dreieck

    Diese etwas andere Art der Kurvendiskussion stellt eine Verbindung zwischen der Analysis der Oberstufe und den Inhalten der Stochastik her (ab Jahrgangsstufe 12).; Lernressourcentyp: Arbeitsblatt (druckbar); Software (Anwendung oder Lehr- und Lernsoftware); Mindestalter: 15; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:53718" }

  • Glücksrad Wahrscheinlichkeit berechnen, Beispiel 2 | W.14.03

    Ein Glücksrad ist ein Rad, das in mehrere sogenannte Sektoren aufgeteilt ist. Wenn die Sektoren nicht gleich groß sind, ist meist der Winkel jedes Sektors gegeben, über welchen man die Wahrscheinlichkeit berechnen kann, mit welcher der Sektor auftritt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010735" }

  • Verteilungsfunktion, Wahrscheinlichkeitsfunktion | Wahrscheinlichkeitsrechnung Formeln W.15.05

    Eine Wahrscheinlichkeitsfunktion ist meistens keine richtige Funktion, sondern eine Tabelle. In diese Tabelle werden alle möglichen Ereignisse (=Ergebnisse) eingetragen, sowie deren Wahrscheinlichkeit. Daher heißt die Wahrscheinlichkeitsfunktion auch Verteilungsfunktion, Wahrscheinlichkeitstabelle,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010770" }

  • Erwartungswert und Varianz bei der Binomialverteilung berechnen, Beispiel 2 | W.16.02

    Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010790" }

  • Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette; Beispiel 3

    Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010728" }

  • Erwartungswert und Varianz bei der Binomialverteilung berechnen | W.16.02

    Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010788" }

  • Materialpaket: Unsere Schule in Zahlen

    Auf den Seiten von PIK AS, einem Kooperationsprojekt zur Weiterentwicklung des Mathematikunterrichts an Grundschulen, finden Sie ein Materialpaket zu einer Unterrichtsreihe zum Thema ʺUnsere Schule in Zahlenʺ. Die Materialien stehen zum kostenlosen Download zur Verfügung.

    Details  
    { "HE": "DE:HE:1614719" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite