Ergebnis der Suche (9)
Ergebnis der Suche nach: (Freitext: KURVENDISKUSSION)
Es wurden 140 Einträge gefunden
- Treffer:
- 81 bis 90
-
Kurvendiskussion: Ganzrationale Funktionen
In dieser Unterrichtseinheit zu ganzrationalen Funktionen festigen die Schülerinnen und Schüler mithilfe dynamischer Übungsblätter die Lerninhalte der Kurvendiskussion.
Details { "LO": "DE:LO:de.lehrer-online.un_1000529" }
-
Analysis 2 | Grundlagen der Funktionsanalyse / Kurvendiskussion
Die Analysis beschäftigt sich mit Funktionen. Die aus mathematischer Sicht interessantesten Punkte sind unter dem Oberbegriff Funktionsanalyse bzw. Kurvendiskussion zusammengefasst. Darin enthalten sind Schnittpunkte mit den Achsen, Hoch-, Tief- und Wendepunkte, evtl. noch Asymptoten. Als sehr wichtiges Hilfsmittel benötigt man die Ableitungen (=Differenzial) und das ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008621" }
-
Oberprima Lernvideos zu Kurvendiskussionen
Auf dieser Seite von Oberprima findet man sehr viele gut erklärte Lernvideos zu Kurvendiskussionen aller in der Oberstufe zu behandelnden Funktionsklassen darunter auch ganzrationale und gebrochenrationale Funktionen.
Details { "HE": "DE:HE:2837470" }
-
Schaubild einer ganzrationalen Funktion erstellen, Beispiel 2 | A.46.06
Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009644" }
-
Schaubild einer ganzrationalen Funktion erstellen, Beispiel 3 | A.46.06
Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009645" }
-
Nullstelle berechnen (Mathematik)
Um die Nullstellen einer Funktion zu berechnen, muss man die x-Werte finden, für die f left(x right)=0 wird. Im Normalfall setzt man daher den Funktionsterm gleich Null und versucht, die sich ergebende Gleichung nach x aufzulösen.
Details { "DBS": "DE:DBS:55939" }
-
Schaubild einer ganzrationalen Funktion erstellen | A.46.06
Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009642" }
-
Schaubild einer ganzrationalen Funktion erstellen, Beispiel 1 | A.46.06
Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009643" }
-
Exponentialfunktion: Rechenbeispiele zur Funktionsanalyse | A.41.11
Ein paar Beispiele von Funktionsuntersuchungen von e-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte und fertigen eine Skizze.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009447" }
-
Exponentialfunktion: Rechenbeispiele zur Funktionsanalyse, Beispiel 2 | A.41.11
Ein paar Beispiele von Funktionsuntersuchungen von e-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte und fertigen eine Skizze.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009449" }