Ergebnis der Suche (7)
Ergebnis der Suche nach: (Freitext: KURVENDISKUSSION)
Es wurden 140 Einträge gefunden
- Treffer:
- 61 bis 70
-
Kurvendiskussion Beispiel 5b: Funktion auf Symmetrie untersuchen | A.19.05
Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009026" }
-
Kurvendiskussion Beispiel 5a: Ableitungen bestimmen | A.19.05
Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009025" }
-
Kurvendiskussion Beispiel 1d: Extrema berechnen | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008995" }
-
Kurvendiskussion Beispiel 2f: Wendenormale bestimmen | A.19.02
In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als Bonbon bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009004" }
-
Kurvendiskussion Beispiel 1a: Ableitungen bestimmen | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008992" }
-
Analysis: Videos zur Kurvendiskussion
Dieses Unterrichtsmaterial vermittelt Basiswissen zum Thema Kurvendiskussion. Sie baut auf dem Stoff der Mittelstufe auf und vermittelt Grundkenntnisse und Grundbegriffe der Kurvendiskussion.
Details { "LO": "DE:LO:de.lehrer-online.wm_000002" }
-
Kurvendiskussion Beispiel 3h: Fläche zwischen Funktion und der an x-Achse gespiegelten Funktion
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009016" }
-
Kurvendiskussion Beispiel 3g: Wendenormale berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009015" }
-
Kurvendiskussion Beispiel 3f: Funktion zeichnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009014" }
-
Kurvendiskussion Beispiel 3c: Nullstellen berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009011" }