Ergebnis der Suche (6)
Ergebnis der Suche nach: (Freitext: KURVENDISKUSSION)
Es wurden 140 Einträge gefunden
- Treffer:
- 51 bis 60
-
Kurvendiskussion Beispiel 2: dreifache Nullstelle; Sattelpunkt; Wendetangente; Fläche | A.19.02
In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als Bonbon bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008998" }
-
Kurvendiskussion Beispiel 2g: Funktion zeichnen | A.19.02
In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als Bonbon bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009005" }
-
Kurvendiskussion Beispiel 2a: Ableitungen bestimmen | A.19.02
In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als Bonbon bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008999" }
-
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2 | A.05.07
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008577" }
-
Kurvendiskussion Beispiel 5: Funktion mit Parameter | A.19.05
Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009024" }
-
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1c: Hoch-/ Tiefpunkt berechnen
Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008573" }
-
Kurvendiskussion Beispiel 1c: Nullstellen berechnen | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008994" }
-
Kurvendiskussion von Kurvenscharen, Beispiel 6 | A.24.02
Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009146" }
-
Kurvendiskussion von Kurvenscharen, Beispiel 7 | A.24.02
Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009147" }
-
Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 3 | A.24.03
Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009152" }