Ergebnis der Suche (8)
Ergebnis der Suche nach: (Freitext: FLÄCHENBERECHNUNG)
Es wurden 130 Einträge gefunden
- Treffer:
- 71 bis 80
-
worksheeps - unendlich viele Matheaufgaben und -Lösungen
Durch Zusammenarbeit der Mathelehrer des HMGs in Leutkirch mit einem Studenten wurde die e-Learning Mathematik-Plattform ins Leben gerufen. Die Webseite bietet die Möglichkeit sich selbst Übungsblätter/Übungsaufgaben mit Lösungen zu verschiedensten Themen aus dem Bereich Mathematik zu erstellen. Nachdem eine Übungsseite erstellt wurde, bleibt diese, z.B. für ...
Details { "DBS": "DE:DBS:35648" }
-
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 5 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008940" }
-
Dreiecksfläche berechnen, Beispiel 3 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008977" }
-
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 6 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008941" }
-
Matheaufgaben aus der Arbeitswelt - Volumenberechnung Prozentrechnen
Die Arbeitsblätter sind für die Sekundarstufe I konzipiert. Zum Teil werden Grundlagen geübt, zum Teil müssen mehrere wichtige Formeln verknüpft werden eine praxistypische Mischung verschiedener Berechnungen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00017672" }
-
Dreiecksfläche berechnen, Beispiel 2 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008976" }
-
Kurvendiskussion Beispiel 2b: Funktion auf Symmetrie untersuchen | A.19.02
In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als Bonbon bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009000" }
-
Integration durch Substitution
Steht in einem Integral die Verknüpfung von zwei Funktionen (evtl. sogar multipliziert mit der Ableitung der inneren Funktion), kann Substitution zur Vereinfachung beitragen.
Details { "DBS": "DE:DBS:56080" }
-
Dreiecksfläche berechnen | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008974" }
-
Fläche berechnen zwischen Funktion und x-Sachse | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008935" }