Wurzelfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (4)

Ergebnis der Suche nach: (Freitext: WURZELFUNKTION)

Es wurden 61 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 40
  • Ableitung von komplizierten Wurzelfunktionen, Beispiel 1 | A.45.02

    Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009586" }

  • Wurzelfunktion: Wurzelgleichungen lösen | A.45.05

    Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach „x“ auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009597" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009602" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009604" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 1 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009603" }

  • Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen | A.45.08

    Beim Zeichnen von Wurzelfunktionen, ist der „Anfangspunkt“ wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter „a“ erhält man, indem man einen beliebigen Punkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009610" }

  • Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 3 | A.45.08

    Beim Zeichnen von Wurzelfunktionen, ist der „Anfangspunkt“ wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter „a“ erhält man, indem man einen beliebigen Punkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009613" }

  • Umkehrfunktion von y=x² (Wurzelfunktion)


    Details  
    { "Select.HE": "DE:Select.HE:860272", "HE": "DE:HE:860272" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 3 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009605" }

  • Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 2 | A.45.08

    Beim Zeichnen von Wurzelfunktionen, ist der „Anfangspunkt“ wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter „a“ erhält man, indem man einen beliebigen Punkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009612" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite