Wahrscheinlichkeitsrechnung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (9)

Ergebnis der Suche nach: (Freitext: WAHRSCHEINLICHKEITSRECHNUNG)

Es wurden 111 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Ergebnismenge (Mathematik)

    Die Ergebnismenge oder der Ergebnisraum ist die Menge aller möglichen Ergebnisse eines Zufallsexperiments . Bezeichnet wird die Ergebnismenge bzw. der Ergebnisraum zumeist mit dem griechischen Buchstaben Omega ("Omega").

    Details  
    { "DBS": "DE:DBS:55924" }

  • Additionssatz, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010752" }

  • Radioaktiver Zerfall mit Würfeln

    Mathematische Beschreibung Mithilfe der Wahrscheinlichkeitsrechnung, kannst du bei Würfeln vorhersagen, wieviele Einer zu bei einem Wurf im Mittel würfelst. Die Wahrscheinlichkeit eine Eins zu würfeln ist frac 1 6 , da es sechs Möglichkeiten gibt, von denen eine die gewünschte Eins

    Details  
    { "LEIFI": "DE:LEIFI:8213" }

  • Bernoulli-Kette (Mathematik)

    Wird ein Bernoulli-Experiment (d. h. ein Experiment mit nur zwei möglichen Ergebnissen) n-mal voneinander unabhängig wiederholt, so spricht man von einer Bernoulli-Kette der Länge n.

    Details  
    { "DBS": "DE:DBS:56181" }

  • Relative Häufigkeit

    Während die absolute Häufigkeit angibt, wie oft ein bestimmtes Ereignis eintritt (Anzahl), beschreibt die relative Häufigkeit, wie groß der Anteil der absoluten Häufigkeit an der Gesamtzahl der Versuche ist. Dies ist eine Methode Wahrscheinlichkeiten praktisch zu bestimmen.

    Details  
    { "DBS": "DE:DBS:55925" }

  • Absolute Häufigkeit

    Die absolute Häufigkeit gibt an, wie oft bei einem Experiment ein bestimmtes Ereignis eintritt. Als Anzahl ist sie immer eine natürliche Zahl zwischen Null und der Gesamtzahl von Versuchen.

    Details  
    { "DBS": "DE:DBS:56007" }

  • Bayes-Theorem / Satz von Bayes | Wahrscheinlichkeitsrechnung Formeln W.15.05

    Der Satz von Bayes (auch „Bayes-Theorem“) ist eigentlich fast das gleiche, wie die bedingte Wahrscheinlichkeit. Die Formel sieht ein bisschen anders aus, die Rechnung ist aber fast zu 100% identisch. Die Formel: P(A|B)*P(B)=P(B|A)*P(A). Hierbei ist P(A|B) die Wahrscheinlichkeit, dass A eintrifft, unter der Bedingung (Info), dass B eingetroffen ist. Ebenso ist P(B|A) die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010766" }

  • Wahrscheinlichkeiten beim Roulette

    Hier erlernen die Schüler, einfache Wahrscheinlichkeiten beim Roulette-Spiel zu berechnen. Des Weiteren wird das Roulette-Spiel an sich erklärt.

    Details  
    { "Select.HE": "DE:Select.HE:1543533" }

  • Binomialverteilung (Ziehen mit Zurücklegen): was ist das? Wie rechnet man damit richtig? | W.16

    Die Binomialverteilung gehört zu den wichtigsten Verteilungen der Wahrscheinlichkeitsrechnung. Man wendet sie an, wenn es nur zwei möglichen Ausgänge gibt und wenn sich die Wahrscheinlichkeit nie ändert (also bei Ziehen mit Zurücklegen). Man berechnet mit ihr die W.S. eine ganz bestimmte Anzahl von Treffern zu erzielen. (Die Anzahl der Treffer muss ganzzahlig sein, es ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010782" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet; Beispiel 1 | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010686" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite