Symmetrieachse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (2)

Ergebnis der Suche nach: (Freitext: SYMMETRIEACHSE)

Es wurden 18 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 18
  • Mathe - Symmetrie

    Auf dem werbefinanzierten Portal finden Sie Erklärungen, Beispiele, ein Quiz sowie Aufgaben zur Achsensymmetrie, Spiegelsymmetrie, zu Strecken und Geraden.

    Details  
    { "DBS": "DE:DBS:62043" }

  • Drachenviereck

    Ein Viereck ist ein Drachenviereck, wenn mindestens eine seiner Diagonalen eine Symmetrieachse ist.

    Details  
    { "DBS": "DE:DBS:56040" }

  • Punkt an Gerade spiegeln; Symmetrieachse, Beispiel 1 | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008333" }

  • Punkt an Gerade spiegeln; Symmetrieachse, Beispiel 4 | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008336" }

  • Punkt an Gerade spiegeln; Symmetrieachse, Beispiel 2 | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008334" }

  • Punkt an Gerade spiegeln; Symmetrieachse | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008332" }

  • Punkt an Gerade spiegeln; Symmetrieachse, Beispiel 3 | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008335" }

  • Geometrische Grundkonstruktionen GeoGebra, Lineal und Zirkel

    In dieser Unterrichtseinheit zum Thema "Geometrische Grundkonstruktionen" wird aufgezeigt, wie dynamische Geometriesoftware zum Beispiel beim Halbieren einer Strecke neben Lineal und Zirkel bei der Lösung von geometrischen Problemen helfen kann.

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1000507" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite