Sinusfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (2)

Ergebnis der Suche nach: (Freitext: SINUSFUNKTION)

Es wurden 19 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 19
  • Sinusfunktion mit GEONExT

    Dynamische Materialien ermöglichen einen experimentell-entdeckenden Einstieg in die trigonometrischen Funktionen (Klasse 9 bis 10).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 10; Höchstalter: 14

    Details  
    { "DBS": "DE:DBS:53128" }

  • DynaGeo: "Abwicklung" trigonometrischer Funktionen

    Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00002957" }

  • Sinus, Kosinus und Tangens (Mathematik)

    Die Winkelfunktionen Sinus, Kosinus und Tangens sind die wichtigsten trigonometrischen Funktionen. Dieser Artikel erklärt an Beispielen, wie man diese Funktionen berechnen kann, was Gegenkathete, Hypotenuse und Ankathete sind und welche Rechenregeln es gibt.

    Details  
    { "DBS": "DE:DBS:55956" }

  • Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 2 | B.07.02

    Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009914" }

  • Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 1 | B.07.02

    Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009913" }

  • Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen | B.07.02

    Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009912" }

  • Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 3 | B.07.02

    Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009915" }

  • So löst man eine Differentialgleichung DGL, Beispiel 1 | A.53.01

    Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009699" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 3 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009705" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite