Radius - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (2)

Ergebnis der Suche nach: (Freitext: RADIUS)

Es wurden 76 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Kugel berechnen mit der Kugelgleichung, Beispiel 3 | V.06.07

    Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010550" }

  • Kreisgleichung, Beispiel 1 | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010524" }

  • Kreisgleichung | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010523" }

  • Kugel berechnen mit der Kugelgleichung, Beispiel 2 | V.06.07

    Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010549" }

  • Kugel berechnen mit der Kugelgleichung | V.06.07

    Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010547" }

  • Kugel berechnen mit der Kugelgleichung, Beispiel 1 | V.06.07

    Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010548" }

  • Stabile Kreisbahnen im Gravitationsfeld

    Wir betrachten als Beispiel einen Satelliten, der auf der Erdoberfläche Radius r_ rm E ruht wir vernachlässigen die Erdrotation und der auf eine stabile Kreisbahn mit Radius r_1 um die Erde gebracht werden soll. Hierzu reicht es nicht, dem System Erde-Satellit nur die

    Details  
    { "LEIFI": "DE:LEIFI:9315" }

  • Geometrie. Berechnung von Flächen - Die Kreisfläche. Lösung

    Lösung zum gleichnamigen Arbeitsblatt.

    Details  
    { "MELT": "DE:SODIS:MELT-04602327.14" }

  • Geometrie. Berechnung von Flächen - Die Kreisfläche

    Drei Textaufgaben zur Berechnung der Kreisfläche

    Details  
    { "MELT": "DE:SODIS:MELT-04602327.13" }

  • Einheitskreis: was ist das und wofür man ihn braucht | T.01.03

    Der Einheitskreis hat den Mittelpunkt im Ursprung der Koordinatensystems und hat einen Radius von „1“. Man kann am Einheitskreis ganz viele Theorie zu Sinus, Kosinus, Tangens herleiten und veranschaulichen. Sie werden den Einheitskreis nicht unbedingt brauchen, man kann alles auch anders herleiten oder sich merken. Manche Leute finden die Veranschaulichung am Einheitskreis ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010288" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite