Quadratische Gleichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (7)

Ergebnis der Suche nach: (Freitext: QUADRATISCHE und GLEICHUNG)

Es wurden 97 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Mitternachtsformel, a-b-c-Formel, Beispiel 9 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008703" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 2 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008696" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 5 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008699" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 12 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008706" }

  • Umkehrfunktion von y=x² (Wurzelfunktion)


    Details  
    { "Select.HE": "DE:Select.HE:860272", "HE": "DE:HE:860272" }

  • Online-Arbeitsblatt 5: Übungen zum Darstellen von Normalparabeln

    Zunächst muss der Scheitelpunkt gefunden werden. Danach werden Punkte des Graphen gesucht und anschließend kontrolliert.

    Details  
    { "HE": [] }

  • Quadratische Gleichungen mit der Form ax²+bx=0 lösen, Beispiel 2 | G.04.04

    Falls in einer quadratischen Gleichung keine Zahl ohne „x“ steht, falls die Gleichung also die Form hat: „ax²+bx=0“, klammert man am einfachsten ein „x“ aus. Nun ist x=0 oder die Klammer ist Null. Die klammer löst man nach „x“ auf und hat die zweite Lösung für x. Das Ganze nennt sich „Satz vom Nullprodukt“ (SNP) und ist eigentlich ein Sonderfall der „Lösung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010084" }

  • Quadratische Gleichungen mit der Form ax²+bx=0 lösen | G.04.04

    Falls in einer quadratischen Gleichung keine Zahl ohne „x“ steht, falls die Gleichung also die Form hat: „ax²+bx=0“, klammert man am einfachsten ein „x“ aus. Nun ist x=0 oder die Klammer ist Null. Die klammer löst man nach „x“ auf und hat die zweite Lösung für x. Das Ganze nennt sich „Satz vom Nullprodukt“ (SNP) und ist eigentlich ein Sonderfall der „Lösung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010082" }

  • Quadratische Gleichungen mit der Form ax²+bx=0 lösen, Beispiel 1 | G.04.04

    Falls in einer quadratischen Gleichung keine Zahl ohne „x“ steht, falls die Gleichung also die Form hat: „ax²+bx=0“, klammert man am einfachsten ein „x“ aus. Nun ist x=0 oder die Klammer ist Null. Die klammer löst man nach „x“ auf und hat die zweite Lösung für x. Das Ganze nennt sich „Satz vom Nullprodukt“ (SNP) und ist eigentlich ein Sonderfall der „Lösung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010083" }

  • Quadratische Gleichungen mit der Form ax²+bx=0 lösen, Beispiel 3 | G.04.04

    Falls in einer quadratischen Gleichung keine Zahl ohne „x“ steht, falls die Gleichung also die Form hat: „ax²+bx=0“, klammert man am einfachsten ein „x“ aus. Nun ist x=0 oder die Klammer ist Null. Die klammer löst man nach „x“ auf und hat die zweite Lösung für x. Das Ganze nennt sich „Satz vom Nullprodukt“ (SNP) und ist eigentlich ein Sonderfall der „Lösung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010085" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite