Parabel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (6)

Ergebnis der Suche nach: (Freitext: PARABEL)

Es wurden 222 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Normalform einer Parabel aus Scheitelform bestimmen, Beispiel 2 | A.04.05

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man den Scheitelpunkt gegeben, so setzt man seine Koordinaten für xs und ys ein [x und y bleiben x und y], löst die Klammer auf [binomische Formel oder ausmultiplizieren] und erhält die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008480" }

  • Genre: Fabeln

    bei Gutenberg.de

    Details  
    { "HE": "DE:HE:129888" }

  • Parabel

    Eine Parabel ist der Graph einer quadratischen Funktion. Parabeln haben ein typisches bogenförmiges Aussehen und können nach oben oder nach unten geöffnet sein. Ihr eindeutig bestimmter tiefster bzw. höchster Punkt heißt Scheitelpunkt.

    Details  
    { "DBS": "DE:DBS:56101" }

  • Gleichung dritten Grades; Nullstellen kubische Parabel berechnen | A.05.01

    Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008550" }

  • Schnittpunkte einer Parabel mit einer Gerade berechnen, Beispiel 4 | A.04.11

    Sucht man den Schnittpunkt einer Parabel mit einer Gerade, muss man beide gleichsetzen. Nun bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in die Parabel oder in die Gerade ein, hat man auch die y-Werte und damit den kompletten Schnittpunkt (bzw. die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008509" }

  • Schnittpunkte einer Parabel mit einer Gerade berechnen, Beispiel 3 | A.04.11

    Sucht man den Schnittpunkt einer Parabel mit einer Gerade, muss man beide gleichsetzen. Nun bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in die Parabel oder in die Gerade ein, hat man auch die y-Werte und damit den kompletten Schnittpunkt (bzw. die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008508" }

  • Gleichung dritten Grades; Nullstellen kubische Parabel berechnen, Beispiel 3 | A.05.01

    Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008553" }

  • Schnittpunkte einer Parabel mit einer Gerade berechnen, Beispiel 2 | A.04.11

    Sucht man den Schnittpunkt einer Parabel mit einer Gerade, muss man beide gleichsetzen. Nun bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in die Parabel oder in die Gerade ein, hat man auch die y-Werte und damit den kompletten Schnittpunkt (bzw. die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008507" }

  • Scheitelpunkt einer Parabel

    Der Scheitelpunkt ist der höchste bzw. tiefste Punkt (Extrempunkt) einer Parabel.

    Details  
    { "DBS": "DE:DBS:56064" }

  • Normalform einer Parabel aus Scheitelform bestimmen | A.04.05

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man den Scheitelpunkt gegeben, so setzt man seine Koordinaten für xs und ys ein [x und y bleiben x und y], löst die Klammer auf [binomische Formel oder ausmultiplizieren] und erhält die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008478" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite