Nullstelle - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (21)
Ergebnis der Suche nach: (Freitext: NULLSTELLE)
Es wurden 219 Einträge gefunden
- Treffer:
- 201 bis 210
-
Schaubild einer gebrochen-rationalen Funktion erstellen, Beispiel 3 | A.43.08
Gebrochen-rationale Funktionen zeichnet man am besten über die Asymptoten. Man zeichnet also zuerst die Asymptoten, danach eventuell Nullstellen (falls man Hoch-, Tief- oder Wendepunkte kennt zeichnet man diese ebenfalls ein) und versucht die Funktion zu zeichnen. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen. Das sollte für ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009528" }
-
Extremwertaufgaben, schwierige Übungen, Beispiel 4 | A.21.09
Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009071" }
-
Lineare Ungleichungen, Beispiel 1 | A.26.01
Eine lineare Ungleichung ist eine Ungleichung, in der nur x vorkommt. Kein x² oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich Kleinerzeichen oder ein Größerzeichen. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein x hat, kommt auf die linke Seite, alles ohne x auf die rechte Seite. Teilt man durch etwas ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009174" }
-
Schaubild einer Ableitungsfunktion zeichnen / skizzieren | A.27.03
Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte NEW-Tabelle ist schneller, funktioniert aber bei manchen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009215" }
-
Lineare Ungleichungen, Beispiel 2 | A.26.01
Eine lineare Ungleichung ist eine Ungleichung, in der nur x vorkommt. Kein x² oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich Kleinerzeichen oder ein Größerzeichen. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein x hat, kommt auf die linke Seite, alles ohne x auf die rechte Seite. Teilt man durch etwas ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009175" }
-
Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 1 | A.04.10
Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008501" }
-
Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 4 | A.27.04
Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009226" }
-
Extremwertaufgaben, schwierige Übungen, Beispiel 6 | A.21.09
Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009073" }
-
Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 3 | A.42.03
Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009466" }
-
Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 5
Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als hebbare Lücke (ein Loch in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009676" }