Nullstelle - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (16)

Ergebnis der Suche nach: (Freitext: NULLSTELLE)

Es wurden 219 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite

Treffer:
151 bis 160
  • Exponentialfunktion: Nullstellen berechnen, Beispiel 2 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009391" }

  • Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 1 | A.41.02

    Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009397" }

  • Ausklammern: so klammert man einen Term richtig aus, Beispiel 1 | B.01.03

    Wenn zwei Terme durch eine Strichrechnung verbunden sind und gleiche Buchstaben enthalten, so kann man diese Buchstaben „ausklammern“. Z.B. aus „ax²+bx“ kann man „x“ ausklammern. == ax²+bx=x*(ax+b). Das Ausklammern ist also so eine Art „Rückwärts-Ausmultiplizieren“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009798" }

  • Nullstellen von quadratischen Funktionen entdecken

    Die Lösungen einer quadratischen Gleichung müssen sich laut Theorie ja mit Zirkel und Lineal konstruieren lassen. Aber wie geht das? Eine andere interessante Frage lautet: Wie kann man die komplexen Lösungen einer quadratischen Gleichung sichtbar machen? Der Blick über den reellen Tellerrand schafft dabei eine neue Sicht auf die Lösungen von ...

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1000483" }

  • Mathe-Song: lineare Funktionen

    In diesem Mathe-Song von DorFuchs wird alles besungen, was man über lineare Funktionen wissen muss: die Eigenschaften, der Graph, die Bestimmung der Funktionsgleichung aus zwei Punkten und die Berechnung der Nullstelle. Besonders Schülerinnen und Schüler, die noch Schwierigkeiten mit dem Thema lineare Funktionen haben, könnern nachsingen und sich wichtige ...

    Details  
    { "Select.HE": "DE:Select.HE:1680729" }

  • Lineare Ungleichungen, Beispiel 4 | A.26.01

    Eine lineare Ungleichung ist eine Ungleichung, in der nur „x“ vorkommt. Kein „x²“ oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich „Kleinerzeichen“ oder ein „Größerzeichen“. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein „x“ hat, kommt auf die linke Seite, alles ohne „x“ auf die rechte Seite. Teilt man durch etwas ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009177" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 2 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009217" }

  • Schaubild einer ganzrationalen Funktion erstellen | A.46.06

    Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009642" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 4 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009219" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 3 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009218" }

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite