Nullstelle - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (14)

Ergebnis der Suche nach: (Freitext: NULLSTELLE)

Es wurden 219 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 8 9 10 11 12 13 14 15 16 17 18 19 Eine Seite vor Zur letzten Seite

Treffer:
131 bis 140
  • Schaubild einer Logarithmusfunktion erstellen, Beispiel 3 | A.44.07

    ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009569" }

  • Polynome über Nullstellen aufstellen, Beispiel 3 | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009635" }

  • Polynome über Nullstellen aufstellen, Beispiel 2 | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009634" }

  • Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 2 | A.45.09

    Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009616" }

  • Schaubild einer Logarithmusfunktion erstellen, Beispiel 5 | A.44.07

    ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009571" }

  • Parabel zeichnen (Mathematik)

    Dieser Artikel befasst sich mit dem Zeichnen des Graphen einer quadratischen Funktion.

    Details  
    { "DBS": "DE:DBS:56209" }

  • Integralfunktion bestimmen, Beispiel 3 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008986" }

  • Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 3 | A.41.02

    Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009399" }

  • Polynome über Nullstellen aufstellen | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009632" }

  • Schaubild einer Wurzelfunktion erstellen, Beispiel 1 | A.45.07

    Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009607" }

Seite:
Zur ersten Seite Eine Seite zurück 8 9 10 11 12 13 14 15 16 17 18 19 Eine Seite vor Zur letzten Seite