Nullstelle - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (13)
Ergebnis der Suche nach: (Freitext: NULLSTELLE)
Es wurden 219 Einträge gefunden
- Treffer:
- 121 bis 130
-
Integralfunktion bestimmen, Beispiel 1 | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008984" }
-
Ungleichungen | A.26
Eine Ungleichung hat kein Gleich-Zeichen, sondern ein Ungleichheits-Zeichen, also ein Kleiner-Zeichen oder ein Größer-Zeichen (bzw. kleiner gleich oder größer gleich). Man behandelt Ungleichungen genau wie Gleichungen, nur dass sich das Ungleichheitszeichen umdreht, wenn man mit einer negativen Zahl multipliziert oder durch eine negative Zahl ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009172" }
-
Schaubild einer Exponentialfunktion erstellen | A.41.09
Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009439" }
-
Schaubild einer Wurzelfunktion erstellen, Beispiel 3 | A.45.07
Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009609" }
-
Exponentialfunktion: kurze Einführung in die e-Funktion | A.41
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die mit Abstand wichtigste Exponentialfunktion ist die e-Funktion, welche die Eulersche Zahl (also e=2,718...) als Basis hat.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009388" }
-
Integralfunktion bestimmen, Beispiel 2 | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008985" }
-
Ungleichungen höherer Potenz, Beispiel 3 | A.26.03
Eine höhere Ungleichung oder besser eine Ungleichung höherer Potenz ist eine Ungleichung, in welcher höhere Potenzen von x auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009190" }
-
Schaubild einer Wurzelfunktion erstellen, Beispiel 2 | A.45.07
Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009608" }
-
Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 2 | A.43.01
Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009503" }
-
Ungleichungen höherer Potenz | A.26.03
Eine höhere Ungleichung oder besser eine Ungleichung höherer Potenz ist eine Ungleichung, in welcher höhere Potenzen von x auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009187" }