Minimum - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (2)

Ergebnis der Suche nach: (Freitext: MINIMUM)

Es wurden 30 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Abstand Punkt-Funktion mit GTR / CAS berechnen, Beispiel 1 | A.21.08

    Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt den Abstand des Punktes P zum beliebigen Punkt P(u|f(u)) mit Hilfe der Abstandsformel auf und erhält den Abstand in Abhängigkeit vom Parameter u. Diesen Abstand gibt man als Funktion in den GTR/CAS ein und bestimmt das Minimum. (Abstand Punkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009064" }

  • Abstand zwischen Funktionen berechnen, Beispiel 3 | A.21.06

    Die vermutlich häufigste Variante von Extremwertaufgaben ist der Unterschied zwischen zwei Funktionen. Es geht hierbei um den senkrecht gemessenen Abstand zwischen zwei Funktionen. Man zieht dafür die beiden Funktionen von einander ab (man bestimmt also die Differenzfunktion) und bestimmt davon das Maximum oder Minimum.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009058" }

  • Extremum (Mathematik)

    Ein Extremum ist der Oberbegriff für ein lokales oder globales Minimum oder Maximum.

    Details  
    { "DBS": "DE:DBS:55963" }

  • Should the Voting Age Be Lowered to 16?

    Students examine the question: Is the minimum legal voting age of 18 years old fair and appropriate, in your opinion, or should it be lowered? (New York Times 2018)

    Details  
    { "HE": [] }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 2 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009053" }

  • Volumen Kegel und Volumen Zylinder berechnen | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009051" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 3 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009054" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 1 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009052" }

  • Abstand Punkt Gerade berechnen mit GTR oder CAS, Beispiel 1 | V.03.04

    Den Abstand Punkt Gerade kann man auf mehrere Arten berechnen. Für eine der Möglichkeiten verwendet man grafischen Taschenrechner (also GTR oder CAS). Man schreibt die Gerade in Punktform um (stellt also einen laufenden Punkt auf) und bestimmt den Abstand von diesem laufenden Punkt zum Ausgangspunkt (in Abhängigkeit vom Parameter). Diesen Abstand gibt man als Funktion in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010434" }

  • Abstand Punkt Gerade berechnen mit GTR oder CAS, Beispiel 3 | V.03.04

    Den Abstand Punkt Gerade kann man auf mehrere Arten berechnen. Für eine der Möglichkeiten verwendet man grafischen Taschenrechner (also GTR oder CAS). Man schreibt die Gerade in Punktform um (stellt also einen laufenden Punkt auf) und bestimmt den Abstand von diesem laufenden Punkt zum Ausgangspunkt (in Abhängigkeit vom Parameter). Diesen Abstand gibt man als Funktion in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010436" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite